Government College of Engineering, Keonjhar

Lecture Notes

Module-3

Vector Differential Calculus

vector and scalar functions and fields, Derivatives, Curves, tangents and arc Length, gradient, divergence, curl
vector function: If a vector \vec{F} is a function of a scalar variable t, then we write

$$
\vec{F}=\vec{F}(t)
$$

If the components of $F(t)$ along x-axis, y-axis and z-axis are $f_{1}(t), f_{2}(t), f_{3}(t)$ respectively, then $\vec{F}(t)=f_{1}(t) \hat{\imath}+f_{2}(t) \hat{\jmath}+f_{3}(t) \hat{k}$.

Differentiation of vectors:
We define derivative of a vector function $\vec{F}(t)$ as $\frac{d \vec{F}}{d t}=\alpha_{\delta t \rightarrow 0} \frac{\vec{F}(t+\delta t)-\vec{F}(t)}{\delta t}$
General rules of differentiation:
If φ is a scalar function and $\vec{F}, \vec{G}, \vec{H}$ are vector functions, then
(i) $\frac{d}{d T}(\vec{F} \pm \vec{G})=\frac{d \vec{F}}{d t} \pm \frac{d \vec{G}}{d t}$
(ii) $\frac{d}{d t}(\vec{F} \phi)=\vec{F} \frac{d \phi}{d F}+\frac{d \vec{F}}{d t} \cdot \varphi$
(iii) $\frac{d}{d t}(\vec{F} \cdot \vec{G})=\vec{F} \cdot \frac{d \vec{G}}{d t}+\frac{d \vec{F}}{d t} \cdot \vec{G}$
(iv) $\frac{d}{d t}(\vec{F} \times \vec{G})=\vec{F} \times \frac{d \vec{G}}{d t}+\frac{d \vec{F}}{d t} \times \vec{G}$.
(v) $\frac{d}{d t}[\vec{F} \vec{G} \vec{H}]=\left[\frac{d \vec{F}}{d F} \vec{G} \vec{H}\right]+\left[\vec{F} \frac{d \vec{G}}{d t} \vec{H}\right]+\left[\vec{F} \vec{G} \frac{d \vec{H}}{d t}\right.$
(vi)

$$
\begin{aligned}
& \frac{d}{d t}[(\vec{F} \times \vec{G}) \times \vec{H}]=\left(\frac{d \vec{F}}{d t} \times \vec{G}\right) \times \vec{H} \\
& \quad+\left(\vec{F} \times \frac{d \vec{G}}{d t}\right) \times \vec{H}+(\vec{F} \times \vec{G}) \times \frac{d \vec{H}}{d t}
\end{aligned}
$$

Ex: If $\vec{A}=5 t^{2} \hat{i}+t \hat{\jmath}-t^{3} \hat{k}, \vec{B}=\sin t \hat{\imath}-\cos t \hat{\jmath}$, find (i) $\frac{d}{d t}(\vec{A} \cdot \vec{B})$, (ii) $\frac{d}{d t}(\vec{A} \times \vec{B})$.

Sol: (i)

$$
\begin{aligned}
\frac{d}{d t} & (\vec{A} \cdot \vec{B})=\vec{A} \cdot \frac{d \vec{B}}{d t}+\frac{d \vec{A} \cdot \vec{B}}{d t} \\
= & \left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{2} \hat{k}\right) \cdot \frac{d}{d t} \cdot(\sin t \hat{\imath}-\cos t \hat{\jmath}) \\
& +\frac{d}{d t}\left(5 t^{2} \hat{T}+t \hat{\jmath}-t^{3} \hat{k}\right) \cdot(\sin t \hat{i}-\cos t \hat{\jmath}) \\
= & \left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right) \cdot(\cos t \hat{\imath}+\sin t \hat{\jmath}) \\
& \quad+\left(10 t \hat{i}+\hat{\jmath}-3 t^{2} \hat{k}\right) \cdot(\sin t \hat{i}-\operatorname{cost} t \hat{\jmath}) \\
= & \left(5 t^{2} \cos t+t \sin t\right)+(10 t \sin t-\cos t) \\
= & 5 t^{2} \cos t+11 t \cdot \sin t-\cos t .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d t}(\vec{A} \times \vec{B})= & \vec{A} \times \frac{d \vec{B}}{d t}+\frac{d \vec{A}}{d t} \times \vec{B} \\
= & \left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right) \times \frac{d}{d t}(\sin t \hat{\imath}-\cos t \hat{\jmath}) \\
& +\frac{d}{d t}\left(5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}\right) \times(\sin t \hat{\imath}-\cos t \hat{j}) \\
= & \left(5 t^{2} \hat{\imath}+t \hat{j}-t^{2} \hat{k}\right) \times(\cos t \hat{\imath}+\sin t \hat{\jmath}) \\
& +\left(10 t \hat{\imath}+\hat{\jmath}-3 t^{2} \hat{k}\right) \times(\sin t \hat{\imath}-\cos t \hat{\jmath}) \\
= & \left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
5 t^{2} & t & -t^{3} \\
\cos t & \sin t & 0
\end{array}\right|+\left|\begin{array}{ccc}
1 & \hat{\jmath} & \hat{k} \\
\sin t & 1 & -3 t^{2} \\
\sin t & -\cos t & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{gathered}
=\hat{\imath}(+3 \sin t)+\hat{\jmath}\left(-t^{3} \cos t-\hat{k}\left(\begin{array}{r}
5 t^{2} \sin t \\
-t \cos t)
\end{array}\right.\right. \\
+\hat{\imath}\left(-3 t^{2} \cos t\right)+\hat{\jmath}\left(-3 t^{2} \sin t-0\right) \\
+\hat{k}(-10 t \cos t-\sin t) \\
=\left(t^{3} \sin t-3 t^{2} \cos t\right) \hat{\imath}-t^{2}(t \cos t+3 \sin t) \hat{\jmath} \\
+\left[\left(5 t^{2}-1\right) \sin t-11 t \cos t\right] \hat{k}
\end{gathered}
$$

Scalar and vector point function:
If to each point $P(x, y, z)$ of a region R in space there corresponds a unique sealar $f(P)$, then f is called a scalar point function.
En: Temperature distribution in a healed body, density of a body and potential due to gravilg are examples of scalar point function
If to each point $P(x, y, z)$ of a region R in space there corresponds a unique vector $f(D)$, then f is called a vector point function
Ex: The velocity of a moving fined, gravitational Core are the examples of a vector point function.

Vector Differential operator $\operatorname{Del}(\nabla)$:
The vector differential operator Del is denoted by ∇ and is defined by

$$
\nabla=\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}
$$

Gradient of a scalar function:
If $\varphi(x, y, z)$ be a scalar function, then $\uparrow \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$ is called The gradient of the scalar function φ and is denoted by grad ϕ or $\nabla \cdot \varphi$.
Thus, grad $\varphi=\nabla \cdot \phi$

$$
\begin{aligned}
& =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \phi \\
& =\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}
\end{aligned}
$$

Normal and Directional derivative:
(i) Normal: If $\varphi(x, y, z)=c$ represents a family of surfaces for different values of the constant C, on differentiating φ, we get $d d=0$

But $d \varphi=\nabla \cdot \varphi \cdot d \vec{r}$
So, $\nabla \phi \cdot d \vec{r}=0$.

The scalar product of two vectors VQ and $d \vec{r}$ being zero, $\nabla \varphi$ and $d \vec{r}$ are perpendicular to each other. $d \vec{r}$ is the direction of tangent to the given surface.
Thus $V C$ is the vector normal to the surface $\varphi(x, y, z)=C$.
(ii) Directional Derivative:

The component of $\nabla \Phi$ in the direction of a vector \vec{d} is equal to $\nabla \phi \cdot \hat{d}$ and is called the directional derivative of φ in the direction of \vec{d}.
Ex: If $\varphi=3 x^{2} y-y^{3} z^{2}$, find grad φ at the point $(1,-2,-1)$.
Sot: grad $\varphi=\nabla \varphi$

$$
\begin{aligned}
= & \hat{\jmath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z} \\
= & \hat{\uparrow} \frac{\partial}{\partial x}\left(3 x^{2} y-y^{3} z^{2}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(3 x^{2} y-y^{3} z^{2}\right) \\
& \quad+\hat{k} \frac{\partial}{\partial z}\left(3 x^{2} y-y^{3} z^{2}\right) \\
& =\hat{}(6 x y)+\hat{\jmath}\left(3 x^{2}-3 y^{2} z^{2}\right)+\hat{k}\left(-2 y^{3} z\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { grad } \phi \text { at }(1,-2,-1)= & \nabla \phi \mid(1,-2,-1) \\
= & \hat{\imath}\{6(1)(-2)\}+\hat{\jmath}\{3(1)-3(4)(1)\} \\
& +\hat{k}(-2 \cdot(-8) \cdot(-1)\} \\
= & -12 \hat{\imath}-9 \hat{\jmath}-16 \hat{k} .
\end{aligned}
$$

Ex: If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, show the nt
(i) grad $r=\frac{\vec{\gamma}}{\gamma}$
(ii) $\operatorname{grad}\left(\frac{1}{r}\right)=-\frac{\vec{r}}{r^{3}}$
$\operatorname{sot}^{2}:$ (i)

$$
\begin{aligned}
& \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
\Rightarrow & r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\Rightarrow & r^{2}=x^{2}+y^{2}+z^{2} \\
\therefore & 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}
\end{aligned}
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial x}{\partial z}=\frac{z}{r}$

$$
\begin{aligned}
\text { grad } r=\nabla r & =\hat{\imath} \frac{\partial r}{\partial x}+\hat{\jmath} \frac{\partial r}{\partial y}+\hat{k} \frac{\partial r}{\partial z} \\
& =\hat{x} \frac{x}{r}+\hat{\jmath} \frac{y}{r}+\hat{k} \frac{z}{r} \\
& =\frac{1}{r}(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \\
& =\frac{r}{r}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\operatorname{grad}\left(\frac{1}{r}\right) & =\nabla\left(\frac{1}{r}\right) \\
& =\left(\hat{\uparrow} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(\frac{1}{r}\right) \\
& =\hat{\imath} \frac{\partial}{\partial x}\left(\frac{1}{r}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(\frac{1}{r}\right)+\hat{k} \frac{\partial}{\partial z}\left(\frac{1}{r}\right) \\
& =\hat{\imath}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial x}\right)+\hat{f}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial y}\right) \\
& +\hat{k}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{r^{3}}(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \\
& =-\frac{\vec{r}}{r^{3}}
\end{aligned}
$$

Ex: Prove that $\nabla r^{n}=n r^{n-2} \vec{r}$, where $\vec{r}=x \uparrow+\pi+2 \hat{x}$
Soph:

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\therefore r^{n} & =\left(x^{2}+y^{2}+z^{2}\right)^{n / 2} \\
\frac{\partial r^{n}}{\partial x} & =\frac{\partial}{\partial x}\left\{\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}\right\} \\
& =\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{n / 2-1} \cdot 2 x \\
& =n x\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-2}{2}} \\
& =n x\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{n-2} \\
& =n x r^{n-2}
\end{aligned}
$$

Similarly, $\frac{\partial r^{n}}{\partial y}=n y r^{n-2}$
and $\frac{\partial r^{n}}{\partial z}=n z r^{n-2}$

$$
\begin{aligned}
\therefore \nabla r^{n} & =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) r^{n} \\
& =\uparrow \frac{\partial}{\partial x}\left(r^{n}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(r^{n}\right)+\hat{k} \frac{\partial}{\partial z}\left(r^{n}\right) \\
& =\uparrow \cdot\left(n x r^{n-2}\right)+\hat{\jmath}\left(n y r^{n-2}\right)+\hat{k}\left(n z r^{n-2}\right) \\
& =n r^{n-2}(x \uparrow+y \hat{\jmath}+z \hat{k}) \\
& =n n^{n-2} \vec{n}
\end{aligned}
$$

Ex: Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
Soph.

$$
\begin{aligned}
& \text { Here, } \phi=x^{2} y z+4 x z^{2} \\
& \begin{aligned}
\therefore \nabla \phi= & \left(\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2} y z+4 x z^{2}\right) \\
= & \uparrow \frac{\partial}{\partial x}\left(x^{2} y z+4 x z^{2}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(x^{2} y z+4 x z^{2}\right) \\
& \quad+\hat{k} \frac{\partial}{\partial z}\left(x^{2} y z+4 x z^{2}\right) \\
= & \left(2 x y z+4 z^{2}\right) \hat{\imath}+\left(x^{2} z\right) \hat{\jmath}+\left(x^{2} y+8 x z\right) \hat{k}
\end{aligned}
\end{aligned}
$$

Now, $\left.\nabla 巾\right|_{(1,-2,1)}=\left\{2(1)(-2)(1)+4(1)^{2}\right\} \hat{\imath}+(1 \times 1) \hat{\jmath}$

$$
+\{1(-2)+8(1)(1)\} \widehat{k}
$$

$$
=\hat{\jmath}+6 \hat{k}
$$

$$
\text { unit vector } \begin{aligned}
\hat{a} & =\frac{2 \hat{\imath}-\hat{\jmath}-2 \hat{k}}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}} \\
& =\frac{1}{3}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})
\end{aligned}
$$

\therefore The directional derivative of Φ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$ is given by.

$$
\begin{aligned}
\nabla \|_{(-2,1)} \cdot \hat{a} & =(\hat{\jmath}+6 \hat{k}) \cdot \frac{(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})}{3} \\
& =\frac{1}{3}(-1-12)=-\frac{13}{3}
\end{aligned}
$$

Ex: Find the directional derivative of the function $\varphi(x, y, z)=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$ where Q s the point $(5,0,4)$

Sot: Here, $Q=x^{2}-y^{2}+2 z^{2}$

$$
\text { Here, } \begin{aligned}
& \therefore \quad=\quad x^{2}-y^{2}+2 z \\
& \therefore \quad\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}-y^{2}+2 z^{2}\right) \\
&= \uparrow \frac{\partial}{\partial x}\left(x^{2}-y^{2}+2 z^{2}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(x^{2}-y^{2}+2 z^{2}\right) \\
&+\hat{k} \frac{\partial}{\partial z}\left(x^{2}-y^{2}+2 z^{2}\right) \\
&= 2 x \hat{\imath}-2 y \hat{\jmath}+4 z \hat{k}
\end{aligned}
$$

Now, $\left.\nabla \phi\right|_{(1,2,3)}=\{2(1)\} \uparrow-\{2(2)\} \hat{\jmath}+\{4(3)\} \hat{k}$

$$
\begin{aligned}
\overrightarrow{P B}=\vec{Q}-\vec{P} & =(5 \hat{\imath}+4 \hat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{k}) \\
& =4 \hat{i}-2 \hat{\jmath}+\hat{k} \\
\text { unit rector } \hat{a}=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|} & =\frac{4 \hat{i}-2 \hat{\jmath}+\hat{k}}{\sqrt{(4)^{2}+(-2)^{2}+1^{2}}} \\
& =\frac{4 \hat{\imath}-2 \hat{\jmath}+\hat{k}}{\sqrt{21}}
\end{aligned}
$$

\therefore Directional derivative of φ along $\overrightarrow{P Q}$ is

$$
\begin{aligned}
\nabla \phi(1,2,3) \hat{a} & =(2 \hat{-}-4 \hat{\jmath}+\hat{k k}) \frac{(4 \hat{-}-3 \hat{\jmath}+\hat{k})}{\sqrt{21}} \\
& =\frac{8+8+12}{\sqrt{21}}=\frac{28}{\sqrt{21}}
\end{aligned}
$$

Ax: Find the directional derivative of $\varphi=4 e^{2 x-y+z}$ at the point $(1,1,-1)$ in the direction towards the point $(-3,5,6)$.
Soph: Here, $\varphi=4 e^{2 x-y+z}$

$$
\begin{aligned}
& \nabla \varphi=\left(\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(4 e^{2 x-y+z}\right) \\
&= \uparrow \frac{\partial}{\partial x}\left(4 e^{2 x-y+z}\right)+\hat{\jmath} \frac{\partial}{\partial y}\left(4 e^{2 x-y+z}\right) \\
&+\hat{k} \cdot \frac{\partial}{\partial z}\left(4 e^{2 x-y+z}\right) \\
&= 4\left[2 e^{2 x-y+z} \uparrow-e^{2 x-y+z} \hat{\jmath}+e^{2 x-y+z} \hat{k}\right] \\
&=4 e^{2 x-y+z}(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \\
& \begin{aligned}
\nabla \varphi \text { at the point }(1,1--1) & =\left.\nabla \varphi\right|_{(1,-1)} \\
= & 4 \cdot e^{2-1-1} \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \\
& =4(2 \uparrow-\hat{\jmath}+\hat{k})
\end{aligned}
\end{aligned}
$$

Let $P(1,1,-1)$ and $Q(-3,5,6)$

$$
\begin{aligned}
\text { Then } \begin{aligned}
\overrightarrow{p Q} & = \\
& =-3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})-(\hat{\imath}+\hat{\jmath}-\hat{k}) \\
\text { unit vector } \hat{a} & =\frac{-4 \hat{\jmath}+7 \hat{k}}{\sqrt{(-4)^{2}+(4)+(7)}+7 \hat{k}} \\
& =\frac{-4 \hat{\imath}+4 \hat{\jmath}+7 \hat{k}}{\sqrt{16+16+49}} \\
& =\frac{1}{9}(-4 \hat{\imath}+4 \hat{j}+7 \hat{k})
\end{aligned}
\end{aligned}
$$

\therefore Directional derivative in the direction of

$$
\begin{aligned}
& (-4 \hat{\imath}+4 \hat{\jmath}+7 \hat{k}) \\
& =\left.\nabla \phi\right|_{(1,1,-1)} \cdot \hat{a} \\
& =(8 \uparrow-4 \hat{\jmath}+4 \hat{k}) \cdot \frac{(-4 \hat{\imath}+4 \hat{\jmath}+7 \hat{k})}{9} \\
& =\frac{t+200}{} \\
& =-\frac{20}{9} .
\end{aligned}
$$

Angle between two surfaces
Let $\phi(x, y, z)=c_{1}$ and $\psi(x, y, z)=c_{2}$ are two surfaces.
Let θ be the angle between there two surfaces. ot any point (a, b, c)
Then $\hat{x} \cos \theta=\frac{n_{1} \eta_{2}}{\left|n_{1}\right|\left|n_{2}\right|}$
Where.

$$
\begin{aligned}
& \eta_{1}=\left.\nabla f_{1}\right|_{(a, b, c)} \\
& \eta_{L}=\nabla f_{2}((a, b, c)
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{1}=\varphi(x, y, z)-c_{1} \\
& f_{2}=\psi(x, y, z)-c_{2}
\end{aligned}
$$

Ex: Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.

Sot: Let $f_{1}=x^{2}+y^{2}+z^{2}-9=0$
and $f_{2}=x^{2}+y^{2}-z-3=0$.

$$
\begin{aligned}
\nabla f_{1} & =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-9\right) \\
& =2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k} \\
\left.\nabla f_{1}\right|_{(2,-1,2)} & =4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k} \\
\nabla f_{2} & =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}-z-3\right) \\
& =2 x \hat{\imath}+2 y \hat{\jmath}-\hat{k} \\
\left.\nabla f_{2}\right|_{(2,-1,2)} & =4 \hat{\imath}-2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

- Let θ be the angle between the two surfaces at $(2,-1,2)$.
Then $\cos \theta=\frac{\eta_{1} \eta_{2}}{\left|\eta_{1}\right|\left|\eta_{2}\right|}$

$$
\begin{aligned}
& =\frac{(4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k})(4 \hat{\imath}-2 \hat{\jmath}-\hat{k})}{\sqrt{(4)^{2}+(-2)^{2}+(4)^{2}} \sqrt{(4)^{2}+(-2)^{2}+(-1)^{2}}} \\
& =\frac{16+4-4}{\sqrt{36}} \sqrt{21}=\frac{16}{6 \sqrt{21}} \\
\therefore \theta & =\cos ^{2}\left(\frac{8}{2 \sqrt{21}}\right)
\end{aligned}
$$

Divergence f a vector function:
The divergence of a vector point function

$$
\vec{F}=f_{1} \hat{\imath}+f_{2} \hat{\jmath}+f_{3} \hat{k} \text { is denied by } \operatorname{div} F \sigma \vec{F}
$$ and is defined as

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\left(\hat{\partial} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(f \hat{\imath}+f_{2} \hat{\jmath}+\frac{f}{3} \hat{k}\right) \\
& =\frac{\partial f}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
\end{aligned}
$$

It is evident the ct div \vec{F} is a scalar function If $\operatorname{div} \vec{F}=0, \vec{F}$ is called solenoidal.
curl of a vector point function:
The curl of a vector point function $\vec{F}=f i+t\left(\sqrt[J]{H}+\hat{S}_{3}\right.$ \dot{i} denolsd by curl \vec{F} or $\nabla \times \vec{E}$ and is defined as

$$
\begin{aligned}
& \text { curl } \vec{F}=\vec{\nabla} \times \vec{F}=\left\{\left(\hat{F} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times(f \hat{\imath}+\hat{f} \hat{y}+f \hat{\xi}\right. \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\imath} & \hat{k} \\
\partial \partial_{x} & \partial y & \partial b_{z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right| \\
& =\uparrow\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)-\hat{\jmath}\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right)+\hat{k}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) .
\end{aligned}
$$

Curd \vec{F} is a vector quantity.
If curl $\vec{F}=0, \vec{F}$ is called irrotational vectorfield.

Ax: Find the divergence and curd of the vector $\vec{F}=x y z \uparrow+3 x^{2} y \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at $(2,-1,1)$.

Soph: Here, ne have.

$$
\begin{aligned}
& \vec{F}=x y z \hat{\imath}+3 x^{2} y \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k} \\
& \operatorname{div} \vec{F}=\nabla \vec{F} \\
& =\frac{\partial}{\partial x}(x y z)+\frac{\partial}{\partial y}\left(3 x^{2} y\right)+\frac{\partial}{\partial z}\left(x z^{2}-y z\right) \\
& =y z+3 x^{2}+2 x z-y^{2} \\
& \operatorname{div} \vec{F} \text { at }(2,-1,1)=-1+12+4-1=14 \\
& \begin{array}{cc}
\text { curl } \vec{F}=\left|\begin{array}{cc}
\hat{i} & \hat{j} \\
\partial \partial x & \partial y \\
x y z & 3 x^{2} y
\end{array}\right| x z^{2} \\
& \\
=T\left\{\frac{\partial}{\partial y}\left(x z^{2}-y^{2} z\right)-\partial \partial z\left(3 x^{2}-y\right)\right\}
\end{array} \\
& +\hat{\jmath}\left\{\frac{\partial}{\text { } z}(x y z)-\text { oryx }\left(x z^{2}-y^{2} z\right)\right\} \\
& +\hat{k}\left\{\partial / \partial x\left(3 x^{2} y\right)-\partial / \partial y(x y z)\right\} \\
& =-2 y z \hat{\imath}+\left(x y-z^{2}\right) \hat{\jmath}+(6 x y-x z) \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Curl } \vec{F} \text { ' at }(2,-1,1) \\
& =\{-2(-1)(1)\} \uparrow+\{2(-1)((2-x)-1\} \hat{\jmath} . \\
& \\
& +\{6(2)(-1)-2(1)\} \hat{k} \\
& = \\
& =2 \uparrow-3 \hat{\jmath}-14 \hat{k} .
\end{aligned}
$$

Ex: If $\vec{v}=\frac{x \hat{\imath}+y+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$, find the value of $\operatorname{div} \vec{v}$.
Son: We have, $\vec{v}=\frac{x \hat{\imath}+y_{\hat{\jmath}}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$
We $\operatorname{lin} v=\nabla \vec{v}$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{\partial} \partial y+\hat{k} \% z\right)\left(\frac{x \hat{\partial}+y^{\hat{y}}+z \bar{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
& =\partial / \partial\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)+\frac{\partial}{\partial z}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
& =\left\{\frac{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \cdot 1-x \cdot \frac{2 x}{\sqrt{x^{2}+y^{2}+z^{2}}}}{\left(x^{2}+y^{2}+z^{2}\right)}\right\}+\{ \\
& \left\{\frac{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \cdot 1-y \cdot \frac{2 y}{\sqrt{x^{2}+y^{2}+z^{2}}}}{x^{2}+y^{2}+z^{2}}\right\} \\
& +\left\{\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \cdot 1-z \cdot \frac{2 z}{\sqrt{x^{2}+y^{2}+z 2}}}{\left(x^{2}+y^{2} \rightarrow z^{2}\right)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}+y^{2}+z^{2}\right)-x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)-y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& +\frac{\left(x^{2}+y^{2}+z^{2}\right)-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{2}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{aligned}
$$

Ex: Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$,
where $n=\sqrt{x^{2}+y^{2}+z^{2}}$
So th: We have, $r=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}+z^{2} \\
& \frac{\partial r}{\partial x}=\frac{x}{r}, \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r} \\
& \operatorname{grad}\left(r^{n}\right)=\nabla \gamma^{n}=n \gamma^{n-2} \rightarrow \text { [see previous ex.] } \\
& =n \gamma^{n-2}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})
\end{aligned}
$$

Now, $\operatorname{div}\left(\operatorname{grad} \gamma^{n}\right)=\operatorname{div} \cdot\left[n r^{n-2}(x \hat{\imath}+y \hat{s}+z \hat{k})\right]$

$$
\begin{array}{r}
=\left(\hat{\imath} \frac{\partial \partial x}{\partial}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(n \gamma^{n-2} x \uparrow+n \gamma^{n-2} y \hat{\jmath}\right. \\
\left.+n \gamma^{n-2} z \hat{k}\right) \\
=\frac{\partial}{\partial x}\left(n \gamma^{n-2} \cdot x\right)+\frac{\partial}{\partial y}\left(n \gamma^{n-2} \cdot y\right)+\frac{\partial}{\partial z}\left(n \gamma^{n-2} z\right)
\end{array}
$$

$$
\begin{aligned}
& =\left\{n r^{n-2}+n x(n-2) r^{n-3} \cdot \frac{\partial r}{\partial x}\right\}+\left\{n r^{n-2}+n y(n-2) r^{n-\frac{\partial r}{\partial y}}\right\} \\
& \\
& +\left\{n r^{n-2}+n z(n-2) r^{n-3} \cdot \frac{\partial r}{\partial z}\right\} \\
& =3 n r^{n-2}+n(n-2) \cdot r^{n-3}\left[x \cdot \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \cdot \frac{\partial r}{\partial z}\right] \\
& =3 n r^{n-2}+n(n-2) r^{n-3}\left[x\left(\frac{x}{r}\right)+y\left(\frac{y}{r}\right)+z\left(\frac{z}{r}\right)\right] \\
& = \\
& 3 n r^{n-2}+n(n-2) r^{n-3} \cdot\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right) \\
& =3 n r^{n-2}+n(n-2) r^{n-3} \cdot \frac{r^{2}}{r}\left[\because r^{2}=x^{2}+y^{2}+z^{2}\right] \\
& =3 n \cdot r^{n-2}+n(n-2) r^{n-2} \\
& = \\
& =r^{n-2}\left(3 n+n^{2}-2 n\right) \\
& = \\
& =r^{n-2}\left(n^{2}+n\right) \\
& =
\end{aligned}
$$

If we put $n=-1$,

$$
\begin{aligned}
\therefore \text { div grad }\left(\frac{1}{r}\right) & =-1(-1+1) r^{-1-2} \\
\therefore \nabla^{2}\left(\frac{1}{r}\right) & =0 .
\end{aligned}
$$

Ex: If $\vec{v}=\frac{x \hat{\imath}+y \hat{y}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$, find the value of curt \vec{v}.
Sot! Curl $\vec{v}=\nabla \times \vec{v}$

$$
=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times\left(\frac{x \hat{\imath}+\hat{\jmath}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} & \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)-\frac{\partial}{\partial z}\left(\frac{y}{\sqrt{x^{2}+y+z^{2}}}\right)\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial z}\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)-\frac{\partial}{\partial x}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}\left(\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)-\frac{\partial}{\partial y}\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)\right] \\
& =\hat{i}\left[\frac{-y z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{y z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{2}{2}}}\right] \\
& +\jmath\left[\frac{z x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{z x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right] \\
& +\hat{k}\left[\frac{-x y}{\left(x^{2}+y^{2}+x^{2}\right)^{3 / 2}}+\frac{x y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right] \\
& =0 .
\end{aligned}
$$

Ex: Prove that $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}$ $+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.

Son: Ret

$$
\begin{gathered}
\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath} \\
+(3 x y-2 x z+2 z) \hat{k}
\end{gathered}
$$

For Solonoblal, we have to prove $\nabla \vec{F}=0$.

$$
\left.\begin{array}{l}
\nabla \vec{F}=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot \vec{F} \\
\left.\begin{array}{rl}
= & \left(\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left\{\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}\right. \\
& +(3 x y-2 x z+2 z) \hat{k}\} \\
= & \frac{\partial}{\partial x}(
\end{array} y^{2}-z^{2}+3 y z-2 x\right)+\frac{\partial}{\partial y}(3 x z+2 x y)
\end{array}\right\}
$$

Thus \vec{F} is solenoidal.
For irrotational, we have to prove $\operatorname{cur} \ell \vec{F}=0$.

$$
\begin{aligned}
& \text { How, curl } \left.\vec{F}=\left\lvert\, \begin{array}{ccc}
\hat{1} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(y^{2}-z^{2}+3 y z-2 x\right) & (3 x z+2 x y) & (3 x y-2 x z \\
+2 z)
\end{array}\right.\right] \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}(3 x y-2 x z+2 z)-\frac{\partial}{\partial z}(3 x z+2 x y)\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial z}\left(y^{2}-z^{2}+3 y z-2 x\right)-\frac{\partial}{\partial x}(3 x y-2 x z+2 z)\right] \\
& +\widehat{k}\left[\frac{\partial}{\partial x}(3 x z+2 x y)-\frac{\partial}{\partial y}\left(y^{2}-z^{2}+3 y z-2 x\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{\imath}(3 x-3 x)+\hat{\jmath}(-2 z+3 y-3 y+2 z) \\
& \quad+\hat{k}(3 z+2 y-2 y-3 z) \\
& =0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k} \\
& =0 .
\end{aligned}
$$

Thus, \vec{F} is irrotational.

Ex: Determine the constants a and b such that the curl of vector $\vec{A}=(2 x y+3 y z) \uparrow+$ $\left(x^{2}+a x z-4 z^{2}\right) \hat{\jmath}-(3 x y+b y z) \hat{k}$ is zero.

Sol:

$$
\begin{aligned}
& \text { Curl } \vec{A}=\left|\begin{array}{ccc}
\uparrow & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(2 x y+3 y z) & \left(x^{2}+a x z-4 z^{2}\right) & -(3 x y+b y z)
\end{array}\right| \\
& =\uparrow\left[\frac{\partial}{\partial y}(-3 x y-b y z)-\frac{\partial}{\partial z}\left(x^{2}+a x z-4 z^{2}\right)\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial z}(2 x y+3 y z)-\frac{\partial}{\partial x}(-3 x y-b y z)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}\left(x^{2}+a x z-4 z^{2}\right)-\frac{\partial}{\partial y}(2 x y+3 y z)\right] \\
& =\uparrow(-3 x-b z-a x+8 z)+\uparrow(3 y+3 y) \\
& +\hat{k}(2 x+9 z-2 x-3 z)
\end{aligned}
$$

$$
\begin{aligned}
& =\{-x(3+a)+z(8-b)\} \hat{\imath}+6 y \hat{\jmath}+z(a-3) \hat{k} \\
& \text { Carl } \vec{A}=0 \\
& \Rightarrow \quad 3+a=0 \text { and } 8-b=0, \quad a-3=0 \\
& \Rightarrow a=-3, b=8 \\
& \therefore a=-3,3, \quad b=8
\end{aligned}
$$

Ex: If a vector field is given by $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{\imath}-$ $(2 x y+y) \hat{\jmath}$. Is this field irrotational? If so, find its scalar potential.
Goth: $\vec{F}=\left(x^{2}-y^{2}+x\right) T-(2 x y+y) \hat{\jmath}$

$$
\begin{aligned}
\text { Curl } \vec{f} & =\nabla \times \vec{F} \\
= & \left|\begin{array}{ccc}
\hat{F} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(x^{2}-y^{2}+x\right) & -(2 x y+y) & 0
\end{array}\right| \\
= & \left.+0+\frac{\partial}{\partial z}(2 x y+y)\right]+\hat{\jmath}\left[\frac{\partial}{\partial z}\left(x^{2}-y^{2}+x\right)-0\right] \\
& +\hat{k}\left[-\frac{\partial}{\partial x}(2 x y+y)-\frac{\partial}{\partial y}\left(x^{2}-y^{2}+x\right)\right] \\
= & 0 \hat{i}+0 \hat{\jmath}+0 \hat{k} \\
= & 0 .
\end{aligned}
$$

Hence \vec{F} is irrotational.

To find the scalar potential function Φ,

$$
\begin{aligned}
\vec{F} & =\nabla \cdot \phi \\
d \phi & =\frac{\partial \phi}{\partial x} \cdot d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \varphi}{\partial z} \cdot d z \\
& =\left(\uparrow \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}\right)(\hat{\imath} d x+\hat{\jmath} d y+\hat{k} d z) \\
& =\left(\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \varphi \cdot d \vec{r} \\
& =\nabla \cdot \phi \cdot d \vec{r} \\
& =\vec{F} \cdot d \vec{r} \\
& =\left[\left(x^{2}-y^{2}+x\right) \uparrow-(2 x y+y) \hat{\jmath}\right] \cdot(d x \hat{\imath}+d y \hat{\jmath}+d z \hat{x}) \\
= & \left(x^{2}-y^{2}+x\right) \cdot d x-(2 x y+y) \cdot d y . \\
\therefore \phi & =\left(\left[\left(x^{2}-y^{2}+x\right) \cdot d x-(2 x y+y) d y\right]+C\right. \\
& =\int\left(x^{2} \cdot d x+x d x-y d y-y^{2} d x-2 x y d y\right)+c \\
& =\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}-\frac{y^{2}}{2}-x y^{2}+C .\right.
\end{aligned}
$$

Hence, the sector potential is

$$
\frac{x^{3}}{3}+\frac{x^{2}}{2}-\frac{y^{2}}{2}-x y^{2}+c
$$

Ex: Find the scalar potential for for $\vec{A}=y^{2} T+2 x y \hat{y}-z^{2} \hat{k}$
Soph: We have $\vec{A}=y^{2} \uparrow+2 x y \jmath-z^{2} \hat{k}$

$$
\text { Curl } \vec{A}=\nabla \times \vec{A}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & 2 x y & -z^{2}
\end{array}\right| \begin{aligned}
& \\
& =\hat{i}(0)+\hat{\jmath}(0)+\hat{k}(0) \\
& =0 .
\end{aligned}
$$

Hence, \vec{A} is irrotational.
To find the scalar potential function f,

$$
\begin{aligned}
\vec{A} & =\nabla f \\
d f & =\frac{\partial f}{\partial x} \cdot d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \\
& =\nabla f \cdot d \vec{\gamma} \\
& =\left(y^{2} T+2 x y-z^{2} \hat{k}\right)(d x \hat{i}+d y \hat{\jmath}+d z \hat{k}) \\
& =y^{2} d x+2 x y d y-z^{2} d z \\
\therefore f & =\int y^{2} d x+2 x y d y-z^{2} d z+C \\
& =\int d\left(x y^{2}\right)-\left(z^{2} d z+C\right. \\
& =x y^{2}-\frac{z^{3}}{3}+C .
\end{aligned}
$$

Del applied twice to point functions:
De have the following five formulae:
1). div. grad f $=\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$
2). Curl grad $f=\nabla \times \nabla f=0$.
3) $\operatorname{div} \operatorname{carl} \vec{F}=\nabla \cdot \nabla \times \vec{F}=0$.
4) Curl curd $\vec{F}=\operatorname{grad} \cdot \operatorname{div} \vec{F}-\nabla^{2} \vec{F}$
i.e., $\nabla \times(\nabla \times \vec{F})=\nabla \cdot(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$
5). grad div $\vec{F}=\operatorname{curld} \operatorname{curd} \vec{F}+\nabla^{2} \vec{F}$
i.e., $\nabla(\nabla \cdot \vec{F})=\nabla \times(\nabla \times \vec{F})+\nabla^{2} \vec{F}$

Proofs: (1)

$$
\begin{aligned}
\nabla f & =\left(\uparrow \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) f \\
& =\uparrow \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}
\end{aligned}
$$

$$
\begin{aligned}
\nabla^{2} f=\nabla \cdot(\nabla f) & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(\hat{\imath} \frac{\partial f}{\partial x}+\hat{\partial} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial z}\right) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& =\nabla^{2} f
\end{aligned}
$$

$\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is called the Laplacian operator.
(2)

$$
\begin{aligned}
& \nabla \times \nabla f=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times\left(\hat{\imath} \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}\right) \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial / \partial x & \partial f y & \partial / \partial z \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right)-\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial y}\right)\right]+\hat{\jmath}\left[\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial x}\right)-\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)\right] \\
& =\hat{i}\left[\frac{\partial^{2} f}{\partial y z z}-\frac{\partial^{2} f}{\partial z \partial y}\right]+\hat{\jmath}\left[\frac{\partial^{2} f}{\partial z x}-\frac{\partial^{2} f}{\partial x \partial z}\right] \\
& +\hat{k}\left[\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right] \\
& =\hat{\imath}(0)+\hat{\jmath}(0)+\hat{k}(0) \\
& =0
\end{aligned}
$$

(3) $\operatorname{div}($ curl $\vec{F})=\nabla \cdot(\nabla \times \vec{F})$

$$
\begin{aligned}
& \operatorname{Let} \vec{F}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+f_{3} \hat{k} \\
& \therefore \nabla(\nabla \times \vec{F})=\nabla \cdot \left\lvert\, \begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial \partial x & \partial / \partial y & \partial z \\
F_{1} & F_{2} & F_{3} \\
=\left(\hat{\imath} \partial / \partial+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) & {\left[\hat{\imath}\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right)+\hat{\jmath}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)\right.} \\
& \left.+\hat{k}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{\partial}{\partial x}\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \\
&+\frac{\partial}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
&= \frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{2}}{\partial x \partial z}+\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F_{3}}{\partial y \partial x} \\
&+\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{1}}{\partial z \partial y} \\
&=\left(\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial y \partial x}\right)+\left(\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{2}}{\partial x \partial z}\right) \\
&+\left(\frac{\partial^{2} f_{1}}{\partial y \partial z}-\frac{\partial^{2} f_{1}}{\partial z \partial y}\right) \\
&=0
\end{aligned}
$$

(4). Let $\vec{F}=f_{1} \hat{\imath}+f_{2} \hat{\jmath}+f_{3} \hat{k}$

$$
\begin{aligned}
& \text { Carl } \vec{F}=\left|\begin{array}{ccc}
\uparrow & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right| \\
&= \uparrow\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)+\hat{\jmath}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right) \\
&+\hat{k}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
& \therefore \text { curl curl } \vec{F}=\nabla \times(\nabla \times \vec{F}) \\
&=\left(\frac{\partial}{\partial x}\right. \\
&\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{\imath}\left[\frac{\partial}{\partial y}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)-\frac{\partial}{\partial z}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial z}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)-\frac{\partial}{\partial x}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)\right] \\
& =\uparrow\left[\frac{\partial^{2} f_{2}}{\partial y^{\partial x}}-\frac{\partial^{2} f_{1}}{\partial y^{2}}-\frac{\partial^{2} f_{1}}{\partial z^{2}}+\frac{\partial f_{3}}{\partial z^{2} x}\right] \\
& +\hat{\jmath}\left[\frac{\partial^{2} f_{3}}{\partial z \partial y}-\frac{\partial^{2} f_{2}}{\partial z^{2}}-\frac{\partial^{2} f_{2}}{\partial x^{2}}+\frac{\partial f_{1}}{\partial x \partial y}\right] \\
& +\hat{k}\left[\frac{\partial^{2} f_{1}}{\partial x \partial z}-\frac{\partial^{2} f_{3}}{\partial x^{2}}-\frac{\partial^{2} f_{3}}{\partial y^{2}}+\frac{\partial^{2} f_{2}}{\partial y^{2 z}}\right] \\
& =\hat{i}\left[\frac{\partial^{2} f_{1}}{\partial x^{2}}+\frac{\partial^{2} f_{2}}{\partial y \partial x}+\frac{\partial^{2} f_{3}}{\partial z \partial x}-\left(\frac{\partial^{2} f_{1}}{\partial x^{2}}+\frac{\partial^{2} f_{1}}{\partial y^{2}}+\frac{\partial^{2} f_{1}}{\partial z^{2}}\right)\right] \\
& +\hat{\jmath}\left[\frac{\partial^{2} f_{2}}{\partial y^{2}}+\frac{\partial^{2} f_{1}}{\partial x \partial y^{\prime}}+\frac{\partial^{2} f_{3}}{\partial z^{\partial y}}-\left(\frac{\partial^{2} f_{2}}{\partial x^{2}}+\frac{\partial^{2} f_{2}}{\partial y^{2}}+\frac{\partial^{2} f_{2}}{\partial z^{2}}\right)\right] \\
& +\hat{k}\left[\frac{\partial^{2} f_{3}}{\partial z^{2}}+\frac{\partial^{2} f_{1}}{\partial x \partial z}+\frac{\partial^{2} f_{2}}{\partial y \partial z}-\left(\frac{\partial^{2} f_{3}}{\partial x^{2}}+\frac{\partial^{2} f_{3}}{\partial y^{2}}+\frac{\partial^{2} f_{3}}{\partial z^{2}}\right)\right] \\
& =\uparrow\left[\frac{\partial}{\partial x}\left(\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}\right)-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f_{1}\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial y}\left(\frac{\partial f_{z}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}\right)-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f_{2}\right] \\
& +\hat{k}\left[\frac{\partial}{\partial z}\left(\frac{\partial^{2} f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}\right)-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\delta^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \hat{\imath}\left[\frac{\partial}{\partial x}(\operatorname{div} \vec{F})-\nabla^{2} f_{1}\right] \\
& +\hat{\jmath}\left[\frac{\partial}{\partial y}(\operatorname{div} \vec{F})-\nabla^{2} f_{2}\right] \\
& +\hat{k}\left[\frac{\partial}{\partial z}(\operatorname{div} \vec{F})-\nabla^{2} f_{3}\right] \\
= & \left(\hat{i} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \operatorname{div} \vec{F} \\
& -\nabla^{2}\left(f_{1} \hat{\imath}+f_{2} \hat{\jmath}+f_{3} \hat{k}\right) \\
= & \nabla \cdot(\nabla \vec{F})-\nabla^{2} \vec{F} \\
= & \operatorname{grad} \cdot \operatorname{div} \vec{F}-\nabla^{2} \vec{F}
\end{aligned}
$$

(5) Curl curl $\overline{\vec{F}}=\operatorname{grad} d i v \vec{F}-\nabla^{2} \vec{F}$

$$
\therefore \text { grad div } \vec{F}=\operatorname{curd} \operatorname{curl} \vec{F}+\nabla^{2} \vec{F}
$$

Government College of Engineering, Keonjhar

Lecture Notes

Module-4

Vector Integral Calculus

Line Integrals, Green Theorem, Surface integrals, Gauss theorem and Stokes Theorem (Without Proof)

Integration of vectors:
If two vectors $\vec{F}(t)$ and $\vec{G}(t)$ be such that

$$
\frac{d \vec{G}(t)}{d t}=\vec{F}(t)
$$

then $\vec{G}(t)$ is called an integral of $F(t)$ and we wrlle $\vec{e} \quad \int \vec{F}(t) d t=\vec{G}(t)$.

Its definite integral is $\int_{a}^{b} \vec{F}(t) d t=\vec{G}(b)-\vec{G}(a)$
Ex 1: Given $\vec{R}(t)=3 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}$, evaluate

$$
\int_{0}^{1}\left(\vec{R} \times \frac{d \vec{R}}{d t^{2}}\right) d t
$$

Soph: Here

$$
\begin{aligned}
& \vec{R}(t)=3 t^{2} \uparrow+t \jmath-t^{3} \hat{k} \\
& \therefore \frac{d \vec{R}(t)}{d t}=6 t \hat{\imath}+\hat{\jmath}-3 t^{2} \hat{k} \\
& \frac{d \vec{R}}{d t^{2}}=6 \hat{\imath}-6+\hat{k} \\
& \therefore \vec{R} \times \frac{d^{2} \vec{R}}{d t^{2}}=\left|\begin{array}{ccc}
\hat{1} & \hat{\jmath} & \hat{k} \\
3 t^{2} & t & -t^{3} \\
6 & 0 & -6 t
\end{array}\right| \\
& =\hat{i}\left(-6 t^{2}-0\right)+\hat{\jmath}\left(-6 t^{3}+18 t^{3}\right)+\hat{k}(0-6 t) \\
& =6 t^{2} \hat{\imath}+12 t^{3} \hat{\jmath}-6 t \hat{k} \\
& \text { How. } \int_{0}^{1}\left(\vec{R} \times \frac{d^{\vec{R}}}{d t 2}\right) d t=\int_{0}^{1}\left(-6 t^{2} \hat{i}+12 t^{3} \hat{\jmath}-6 t \hat{k}\right) d t \\
& \begin{array}{l}
=\left[-\frac{6 t^{3}}{3} \hat{i}+\frac{12 t^{4}}{4} \hat{\jmath}-\frac{6 t^{2}}{2} \hat{k}\right]_{0}^{1} \\
=-2 \hat{\imath}+3 \hat{k}-3 k
\end{array} \\
& =-2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}
\end{aligned}
$$

Line Integral.
Let $\vec{F}(x, y, z)$ be a vector (unction and $A B$ be a given curve.

Cine Integral of the vector function \vec{F} along the curve $A B$ is defined as integral of the component of \vec{F} along the tangent to the curve $A B$.

$$
\therefore \text { Line Integral }=\int_{C} \vec{F} \cdot d \vec{r}
$$

Hole: If \vec{F} represents the variable force acting on a particle along arc $A B$, then the total Work dove $=\int_{A}^{B} \vec{F} \cdot d \vec{r}$.
Ex 2. Evaluate $\int \vec{F} \cdot d \vec{r}$, where $\vec{F}=x^{2} T+x y \hat{\jmath}$ and C is the boundary of the square in the plane $z=0$ and bounded by the lines $x=0, y=0$, $x=a$ and $y=a$.

So ln!

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{O A} \vec{F} \cdot d \vec{r}+\int_{A B} \vec{F} \cdot d \vec{r}+\int_{B C} \vec{F} \cdot d \vec{r}+\int_{C} \vec{F} \cdot d \vec{r}
$$

Here, $\vec{r}=x \uparrow+y \hat{\jmath}$

$$
\therefore d \vec{r}=d x \uparrow+d y \hat{\jmath}
$$

and $\vec{F}=x^{2} \hat{i}+x y \hat{\jmath}$
on $O A, y=0$.

$$
\begin{align*}
\therefore \vec{F} \cdot d \vec{r} & =\left(x^{2} \uparrow+0 \hat{\jmath}\right)(d x \uparrow+0 \hat{\jmath}) \\
& =x^{2} d x \\
\therefore \int_{O A}^{a} \vec{F} \cdot d \vec{r} & =\int_{0}^{a} x^{2} d x=\int_{0}^{a} \frac{x^{3}}{3}=\frac{a^{3}}{3} \tag{1}
\end{align*}
$$

on $\triangle A B$,

$$
\begin{aligned}
& x=a \\
& \therefore d x=0 . \\
& \left.\therefore \vec{F} \cdot d \vec{r}=P^{2}\left(\cdot a^{2} \uparrow+a y \hat{\jmath}\right)(0) \hat{\imath}+d y \hat{\jmath}\right)
\end{aligned}
$$

$$
=2 c a y d y
$$

$$
\begin{align*}
\therefore \int_{A+B} \vec{F} \cdot d \vec{r}=\int_{0}^{a} a y d y & =a\left[\frac{y^{2}}{2}\right]_{0}^{a} \\
& =\frac{a^{3}}{2}
\end{align*}
$$

on $B C, \quad y=a, \quad \therefore d y=0$

$$
\begin{aligned}
\therefore \vec{F} \cdot d \vec{r} & =\left(x^{2} \hat{\imath}+x a \hat{\jmath}\right)(d x \hat{\imath}+0 \hat{\jmath}) \\
& =x^{2} d x
\end{aligned}
$$

$$
\int_{B C} \vec{F} \cdot d \vec{r}=\int_{a}^{0} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{a}^{0}=-\frac{a^{3}}{3}
$$

on co, $x=0$

$$
\therefore \begin{aligned}
\therefore d x=0 \text { and } \vec{F} \cdot d \vec{r} & =0 d x+0 d y \\
& =0
\end{aligned}
$$

$$
\begin{equation*}
\therefore \int_{C_{0}} \vec{F} \cdot d \vec{r}=0 \tag{4}
\end{equation*}
$$

on adding (1), (2), (3) es), ne get

$$
\begin{aligned}
\int \vec{F} \cdot d \vec{r} & =\frac{a^{3}}{3}+\frac{a^{3}}{2}-\frac{a^{3}}{3}+0 \\
& =\frac{a^{3}}{2}
\end{aligned}
$$

Ex 3: A vector field is given by $\vec{F}=(2 y+3) \hat{\imath}+x(\vec{j}+(y z-x) \hat{\mathbf{z}}$ Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the path $c: x=2 t$,

$$
y=t, z=t^{3} \quad \text { from } t=0 \text { to } t=1 \text {. }
$$

Sot : Here $x=2 t, y=t, z=t^{3}$

$$
\begin{aligned}
& \therefore d x=2 d t, \quad d y=d t, \quad d z=3 t^{2} d t \\
& \vec{F} \cdot d \vec{r}=\{(2 y+3) \hat{\imath}+x \hat{\jmath}+(y z-x) \hat{k}\} \cdot(d x \hat{\imath}+d y\}+d z \hat{\jmath} \\
&=(2 y+3) d x+x z d y+(y z-x) d z
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int_{C} \vec{F} \cdot d \vec{r} & =\int_{C}^{(2 y+3) d x+(x z) d y+(y z-1) d z} \\
& =\int_{0}^{1}(2 t+3)(2 d t)+(2 t)\left(t^{3}\right) d t+\left(t^{4}-2 t\right)(3 t d t) \\
& =\int_{0}^{1}\left(4 t+6+2 t^{4}+3 t^{6}-6 t^{3}\right) d t \\
& =\left[4 \frac{t^{2}}{2}+6 t+\frac{2 t^{5}}{5}+3 \frac{t^{7}}{7}-\frac{6 t^{4}}{4}\right]_{0}^{1} \\
& =\left[2 t^{2}+6 t+\frac{2}{5} t^{5}+\frac{3}{7} t^{7}-\frac{3}{2} t^{4}\right]_{0}^{1} \\
& =2+6+\frac{2}{5}+\frac{3}{7}-\frac{3}{2} \\
& =7.328
\end{aligned}
$$

Ex 4. If $\vec{F}=3 x y \uparrow-y^{2} \hat{\rho}$, evaluate $\int_{c} \vec{F} \cdot d \vec{r}$, where C is the curve in the $x y$-plane $y=2 x^{2}$ from $(0,0)$ to (1,2).
Sol's Since the particle moves in the ry plane $(z=0)$, we take, $\vec{\gamma}=x \hat{\imath}+y \hat{\jmath}$

$$
\begin{aligned}
& \therefore d \vec{r}=d x \hat{\imath}+d y \hat{\jmath} \\
& \therefore \int \vec{F} \cdot d \vec{r}=\int\left(3 x y \hat{\imath}-y^{2} \hat{\jmath}\right)(d x \hat{\imath}+d y \hat{\jmath}) \\
&=e_{c}\left(3 x y d x-y^{2} d y\right)
\end{aligned}
$$

Substitinting, $y=2 x^{2}$, where x goes from 0 to 1, we get

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =\int_{x=0}^{1} 3 x\left(2 x^{2}\right) \cdot d x-\left(2 x^{2}\right)^{2} \cdot d\left(2 x^{2}\right) \\
& =\int_{0}^{1} 6 x^{3} d x-4 x^{4} \cdot 4 x d x \\
& =\int_{0}^{1}\left(6 x^{3}-16 x^{5}\right) d x \\
& =\left[6 \cdot \frac{x^{4}}{4}-16 \frac{x^{6}}{6}\right]_{0}^{1} \\
& =-7 / 6 .
\end{aligned}
$$

Ex 5: If $\vec{A}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}$, evaluate the line integral $\oint \vec{A} \cdot d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve $C: x=7, y=t^{2}, z=t^{3}$.

Soph: Ne have.

$$
\begin{aligned}
& \text { have, } \int_{C} \vec{A} \cdot d \vec{r} \\
& =\int_{C}\left[\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}\right](d x \hat{\imath}+d y \hat{y}+d \hat{k} \hat{x})
\end{aligned}
$$

$$
=\int_{c}^{c}\left(3 x^{2}+6 y\right) d x-14 y z d y+20 x z^{2} d z
$$

If $x=7, y=t^{2}, z=7^{3}$, then points $(0,0,0)$ to $(1,1,1)$ corrarsonds to $t=0$ to $t=1$.

Now,

$$
\begin{aligned}
& \int_{t=0} \vec{A} \cdot d \vec{r}=\int_{0}^{t=1}\left[\left(3 t^{2}+6 t^{2}\right) d t-14 t^{2} t^{3} \cdot d\left(t^{2}\right)\right. \\
= & \int_{0}^{1} 9 t^{2} d t-14 t^{3} t^{5} \cdot 2 t d t+20 t \cdot t^{6} \cdot 3 t^{2} d t \\
= & \int_{0}^{1}\left(9 t^{2}-28 t^{6}+60+9\right) d t \\
= & {\left[9 \frac{t^{3}}{3}-28 \frac{t^{7}}{7}+60 \frac{t^{10}}{10}\right]_{0}^{1} } \\
= & {\left[3 t^{3}-4 t^{7}+6 t^{10}\right]_{0}^{1} } \\
= & 3-4+6 \\
= & 5 .
\end{aligned}
$$

Ex.6 Compnte $\int \vec{F} \cdot d \vec{r}$, where $\vec{F}=\frac{\hat{i} y-\hat{\jmath} x}{x^{2}+y^{2}}$ and C
it the circle $x^{2}+y^{2}=11$ sansveaped counler clockwise.

Soln:

$$
\begin{aligned}
& \int_{C} \vec{F} \cdot d \vec{r}=\int_{e}\left(\frac{y \hat{\imath}-x \hat{j}}{x^{2}+y^{2}}\right) \cdot\left(a x \hat{\imath}+d \hat{y}+d \hat{x}^{2}\right) \\
& =\int_{c} \frac{y d x-x d y}{x^{2}+y^{2}} \\
& =\int_{C}(y d x-x d y) \quad\left[\cdots x^{2}+y^{2}=1\right] \\
& \text { Scanned by CamSc. }
\end{aligned}
$$

Parametric equations of the circle are

$$
x=\cos \theta, \quad y=\sin \theta
$$

Putting $x=\cos \theta, y=\sin \theta$
$d x=-\sin \theta d \theta, \quad d y=\cos \theta d \theta$ in $(1$,
Ne get

$$
\begin{aligned}
\int_{\theta} \vec{F} \cdot d \vec{r} & =\int_{0}^{\theta=2 \pi} \sin \theta(-\sin \theta) d \theta-\cos \theta(\cos \theta d \theta) \\
& =-\int_{0}^{2 \pi}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) d \theta \\
& =-\int_{0}^{2 \pi} d \theta \\
& =-2 \pi
\end{aligned}
$$

Ex I. If a force $\vec{F}=2 x^{2} y \hat{T}+3 x y \hat{S}$ displaces a particle in the $x y$-plane from $(0,0)$ to $(1,4)$ along a curve $y=4 x^{2}$. Find the work done.

Soph:

$$
\begin{aligned}
& \text { Work done }=\int_{C} \vec{F} \cdot d \vec{r} \\
&=\int_{0}\left(2 x^{2} y \uparrow+3 x y \hat{\jmath}\right) \cdot(d x \uparrow+d y \hat{\jmath}) \\
&=\int_{0}\left(2 x^{2} y d x+3 x y d y\right) \\
&=\int_{0}^{1} 2 x^{2} \cdot\left(4 x^{2}\right) \cdot d x+3 x\left(4 x^{2}\right) \cdot d\left(4 x^{2}\right) \\
&=\int_{0}^{1} 8 x^{4} d x+12 x^{3} \cdot 8 x d x \\
&=\int_{0}^{1}\left(8 x^{4}+96 x^{4}\right) d x=104\left[\frac{x^{5}}{5}\right]_{0}^{1} \\
&=104 .
\end{aligned}
$$

Surface Integral:
Let \vec{F} be a vector function and s be a given surface.
Surface integral of a vector
 function \vec{F} over the surface S is defined as the integral of the components of \vec{F} along the normal to the surface.

Component of \vec{F} along the normal $=\vec{F} \cdot \hat{n}$, where \hat{A} is the unit normal vector to an element de and $\hat{n}=\frac{\operatorname{gradf}}{|\operatorname{gradf}|}, \quad d s=\frac{d x d y}{|\hat{n} \cdot \hat{k}|}$
then, surface integral of \vec{F} over the surface S.

$$
=\iint_{S} \vec{F} \cdot \hat{n} d s
$$

Ex 8: Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=\left(x+y^{2}\right) \hat{\imath}-2 x \hat{\jmath}$
$+2 y z \hat{k}$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.

Sot 7: A vector normal to the surface S is given by

$$
\begin{aligned}
\nabla(2 x+y+2 z-\theta & =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(2 x+y+2 z-\hat{\theta}) \\
& =2 \hat{\imath}+\hat{\jmath}+2 \hat{k}
\end{aligned}
$$

$\hat{n}=$ unit vector normal to surface S

$$
\begin{aligned}
& =\frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{\sqrt{4+1+4}}=\frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{3} \\
& \therefore \hat{n} \hat{k}=\frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{3} \cdot \hat{k}=\frac{2}{3} \\
& \therefore \int_{S} \vec{A} \cdot \hat{n} d s=\iint_{R} \vec{A} \cdot \hat{n} \cdot \frac{d x d y}{|\hat{h} \cdot \hat{k}|}
\end{aligned}
$$

Where R it he protection of S.
Now, $\vec{A} \cdot \hat{n}=\left[\left(x+y^{2}\right) \hat{\imath}-2 x \hat{\jmath}+2 y z \hat{k}\right] \cdot\left(\frac{2}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\frac{2}{3} \hat{k}\right)$

$$
\begin{align*}
& =\frac{2}{3}\left(x+y^{2}\right)-\frac{2}{3} x+4 / 3 y z \\
& =\frac{2}{3} y^{2}+\frac{4}{3} y z \\
\therefore \int_{S} \vec{A} \cdot \hat{n} d s & =\int_{R}\left(\int_{3} y^{2}+\frac{4}{3} y z\right) \cdot \frac{d x d y}{2 / 3} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \because 2 x+y+2 z=6 \\
& \Rightarrow z=\frac{6-2 x-y}{2}
\end{aligned}
$$

$$
\left.\begin{array}{lll}
x \text { varies } \text { sam } & 0 \text { to } 3 \\
y \text { varies } \operatorname{cram} & \text { o to }(6-2 x)
\end{array} \right\rvert\, \begin{aligned}
& 2 x+y=6 \\
& \text { ass } n y=\frac{x}{3}+\frac{y}{6}=1
\end{aligned} \Rightarrow \frac{6}{b}=1
$$

\therefore from (1)

$$
\begin{aligned}
& \int_{S} \vec{A} \cdot \hat{n} d s=\iint_{R}\left\{\frac{2}{3} y^{2}+\frac{4}{3} y\left(\frac{6-2 x-y}{2}\right)\right\} \cdot \frac{d x d y}{2 / 3} \\
& =\int_{0}^{3} \int_{0}^{6-2 x} \frac{2}{3} y(y+6-2 x-y) \cdot \frac{2 d y \cdot d x}{2 / 3} \\
& =\int_{0}^{3} \int_{0}^{0} \frac{4}{3} y(3-x) \cdot \frac{3}{3} \cdot d y d x \\
& =2 \int_{0}^{3}(3-x) \int_{0}^{6-2 x} y^{2} \cdot d y d x \\
& =2 \int_{0}^{3} \cdot(3-x) \cdot\left[\frac{y^{2}}{2}\right]_{0}^{6-2 x} \cdot d x \\
& =2 \int_{0}^{3}(3-x) \cdot \frac{(6-2 x)^{2}}{2} d x \\
& =4 \int_{0}^{3}(3-x)^{2} d x \\
& =4\left[\frac{(3-x)^{4}}{4(-1)}\right]_{0}^{3} \\
& =-(0-81) \\
& =81 \text {. }
\end{aligned}
$$

Ex 2: Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}$ and S is the part of the plane $2 x+3 y+6 z=12$ included in the first octant.

Soft?: Here $\vec{A}=18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}$.
Given surface $f=2 x+3 y+6 z-12$

$$
\begin{aligned}
\therefore \text { Normal vector } & =\forall f \\
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{x} \frac{\partial}{\partial z}\right)(2 x+3 y+6 z-12) \\
& =2 \hat{\imath}+3 \hat{j}+6 \hat{k}
\end{aligned}
$$

$\therefore \hat{n}=$ unit normal at any point (x, y, z) of

$$
\begin{aligned}
& 2 x+3 y+6 z=12 \\
&= \frac{2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}}{\sqrt{4+9+36}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \\
& \therefore d S= \frac{d x d y}{|n \hat{k}|}=\frac{d x d y}{\frac{1}{7}(2 \hat{k}+3 \hat{\jmath}+(\hat{k}) \cdot \hat{k}}=\frac{d x d y}{6 / 7} \\
&=\frac{97 d x d y}{\frac{7}{6}}
\end{aligned}
$$

How, $\int\left(\vec{A} \cdot \hat{n} d S=\iint(18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}) \frac{(2 \hat{+}+3 \hat{\jmath}+6 \hat{k})}{7}\right.$.

$$
\begin{equation*}
=\iint(6 z-6+3 y) d x d y \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& 2 x+3 y+6 z=12 \\
& \Rightarrow \quad z=\frac{12-2 x-3 y}{6}
\end{aligned}
$$

\therefore from (1), we get x varies form o to 6

$$
\begin{aligned}
& \int\left(\vec{A} \hat{n} d s=\int_{x=0}^{6} \int_{v=0}^{\frac{12-2 x}{3}} \quad y \text { variex } \int \text { romotot } \frac{12-2 x}{3}\right. \\
& x=0 \quad y=0 \\
& =\int_{0}^{6} \int_{0}^{1 / 3(12-2 x)} \cdot(6-2 x) d y d x \\
& =\int_{0}^{6} \cdot(6-2 x) d x[y]_{0}^{1 / 3(12-2 x)} . \\
& =\int_{0}^{6}(6-2 x) \cdot \frac{1}{3}(12-2 x) \cdot d x \\
& =\int_{0}^{0} \frac{4}{3}(3-x)(6-x) d x \\
& =\frac{4}{3} \int^{6}\left(18-9 x+x^{2}\right) d x \\
& =4 / 3\left[18 x-\frac{9 x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{6}=24
\end{aligned}
$$

Ex 10: Evaluate $\iint_{S}(y z \uparrow+z x \hat{\jmath}+x y \hat{k}) \hat{\pi} d s$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant.
Sot: Here $f=x^{2}+y^{2}+z^{2}-a^{2}$
Vectornosinal to the surface $=\nabla \varphi$

$$
\begin{aligned}
& =\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(x^{2}+y^{2}+z^{2}-a^{2}\right) \\
& =2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k} \\
\therefore \hat{n}=\frac{\nabla \varphi}{|\nabla q|} & =\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}}{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}} \\
& =\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}}{2 \sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{x \hat{\imath}+y \hat{\jmath}+2 \hat{k}}{a}\left[\because x^{2}+y^{2}+z=a^{2}\right] \\
\hat{n} \hat{k} & =\frac{x \hat{\imath}+y \hat{\jmath}+z \hat{k}}{a} \cdot \hat{k}=\frac{z}{a} . \\
\therefore \iint_{S} \vec{F} \cdot \hat{n} d s & =\iint_{S} \vec{F} \cdot \hat{n} \cdot \frac{d x d y}{|\hat{n} \hat{k}|} \cdot \\
& =\int\left((y z \hat{\imath}+z x \hat{j}+x y \hat{k}) \frac{(x \hat{\imath}+y \hat{j}+z \hat{k})}{a} \rightarrow\right.
\end{aligned}
$$

$d x d y$ $\frac{z}{a}$.
$=\iint \frac{3 x y z}{a} \cdot \frac{a}{z} \cdot d x d y$.

$$
\begin{aligned}
& =\int_{x=0}^{a} \int_{y=0}^{\sqrt{a^{2}-x^{2}}} 3 x y d y d x \\
& =3 \int_{0}^{a} \cdot x\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}}} \cdot d x \\
& =3 / 2 \int_{0}^{a} x\left(a^{2}-x^{2}\right) \cdot d x \\
& =3 /\left.2\left(a^{2} \frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{a} \\
& =3 / 2\left(\frac{a^{4}}{2}-\frac{a^{4}}{4}\right) \\
& =\frac{3 a^{4}}{8} \cdot
\end{aligned}
$$

Ex II: Show that $\iint_{S} \vec{F} \hat{n} d s=3 / 2$, where $\vec{F}=4 x z \hat{\imath}-y^{2}+y=\hat{k}$ and S is the surface of the cube bounded by the planes, $x=0, x=1, y=0, y=1, z=0, z=1$.

Soph:

$$
\begin{gathered}
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{O A B C} \vec{F} \cdot \hat{n} d s+\iint_{D E F G} \vec{F} \cdot \hat{n} d s+\int_{\text {OAGF }} \vec{F} \cdot \hat{n} d s \\
+\int_{A C E D} \vec{F} \cdot \hat{n} d s+\iint_{A B D G} \vec{F} \cdot \hat{n} d s+\iint_{O C E F} \vec{F} \cdot \hat{n} d s
\end{gathered}
$$

On OABC, $z=0$.

$$
\begin{aligned}
\therefore \int_{O A B C} \vec{F} \cdot \hat{n} d s & =\int_{O A B C}\left(\left(4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}\right)(-\hat{k}) \cdot d x d y\right. \\
& =\int_{0}^{1} \int_{0}^{1}(-y z) d x d y \\
& =0 \quad[\because z=0]
\end{aligned}
$$

on $D E F G, z=1$

$$
\begin{aligned}
\therefore \int_{D E F G} \vec{F} \cdot \hat{r} d s & =\int_{D E F G}\left(4 x z \uparrow-y^{h} \hat{\jmath}+y \cdot \hat{k}\right) \hat{k} \cdot d x d y \\
& =\int_{0}^{1} \int_{0}^{1} y z d x d y \\
& =\int_{0}^{1} \int_{0}^{1} y d x d y \quad[\cdots z=1] \\
& =\int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{0}^{1} d x \\
& =\int_{0}^{1} \frac{1}{2} \cdot d x \\
& =1 / 2[x]_{0}^{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{\vec{F} \cdot \hat{n} d s}=\int\left(\left(4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}\right)(-\hat{y}) \cdot d x d z\right. \\
& \text { OAGF } \\
& \text { OAGF } \\
& =\iint_{\text {OAGF }} y^{2} d x d z \\
& =\int_{0}^{1} \int_{0}^{1} y^{2} d x d z \\
& =0 \quad[\because y=0] \text {. } \\
& \int_{B C E D} \vec{F} \cdot \hat{n} d s=\int_{B C E D}\left(\left(4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}\right)(\hat{J}) d x d z\right. \\
& =\iint_{B C E D}-y^{-} d x d z \\
& =\int_{0}^{B C E D} \int_{0}^{1}-y^{2} d x d z \\
& =-\int_{0}^{1} d x \cdot \int_{0}^{1} d z \quad[\because y=1] \\
& =-[x]_{0}^{1} \cdot[z]_{0}^{1} \\
& =-1 \text {. } \\
& \int_{A B D G}\left(\vec{F} \cdot \hat{n} d s=\iint_{A B D G}\left(4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}\right) \hat{\imath} d y d z\right. \\
& =\int_{0}^{1} \int_{0}^{1} 4 x z d y d z \\
& =\int_{0}^{1} \int_{0}^{1} 4 z d y d z \quad[\because x=1]
\end{aligned}
$$

$$
\begin{aligned}
& =4[y]_{0}^{1} \cdot\left[\frac{z^{2}}{2}\right]_{0}^{1} \\
& =4 \cdot 1 \cdot 1 / 2 \\
& =2 \\
\int_{\text {OCEF }} \vec{F} \cdot \hat{n} d s & =\int_{O C E F}\left(4 x z \hat{1}-y^{2} \hat{j}+y z \hat{k}\right) \cdot(-\hat{1}) \cdot d y d z \\
& =\int_{0}^{1} \int_{0}^{1}-4 x z d y d z \\
& =0 \quad[\because x=0]
\end{aligned}
$$

$\therefore \quad$ from 11 , We get

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \hat{r} d s & =0+\frac{1}{2}+0-1+2+0 \\
& =3 / 2
\end{aligned}
$$

Volume Integral.
Let. \vec{F} be a vector point function and volume \checkmark enclosed by a coped surface.

$$
\text { The volume integral }=\iiint_{V} \vec{F} \cdot d v \text {. }
$$

Ex 12: If $\vec{F}=2 z \hat{\imath}-x \hat{\jmath}+y \hat{k}$, evaluate $\iiint_{v} \vec{F} \cdot d v$, Where v is the region bounded by the snofaees

$$
x=0, y=0, x=2, y=4, z=x^{2}, z=2 .
$$

Soph:

$$
\begin{aligned}
& \iiint_{V} \vec{F} \cdot d v=\iiint(2 z \hat{\imath}-x \hat{\jmath}+y \hat{k}) d x d y d z \\
& =\int_{0}^{2} \int_{0}^{4} \int_{x^{2}}^{2}(2 z \hat{\imath}-x \hat{\jmath}+y \hat{k}) d z d y d x \\
& =\int_{0}^{2} \int_{0}^{4}\left[\cdot 2 \frac{z^{2}}{2} \pi-x z \hat{j}+y z \hat{k}\right]_{x^{2}}^{2} \cdot d y \cdot d x \\
& =\int_{0}^{2} \int_{0}^{4}\left[z^{2} \hat{-}-x z \hat{\jmath}+y z \hat{k}\right]_{x^{2}}^{2} d y d x \\
& =\int_{0}^{2} \int_{0}^{4} \cdot\left[\left(4-x^{4}\right) \hat{\imath}-\left(2 x-x^{3}\right) \hat{\jmath}+\left(2 y-x^{2} y\right) \hat{k}\right] d x d x \\
& =\int_{0}^{2}\left[\left(4-x^{2}\right) y \hat{\imath}-\left(2 x-x^{3}\right) y \hat{\jmath}+\left(2 \frac{y^{2}}{2}-x^{2} \frac{y^{2}}{2}\right) \hat{k}\right]_{0}^{4} \cdot d x \\
& =\int_{0}^{2}\left\{4\left(4-x^{4}\right) \hat{\imath}-4\left(2 x-x^{3}\right) \hat{\jmath}+\left(16-\frac{16 x^{2}}{2}\right) \hat{k}\right\} d x \\
& =\int_{0}^{2}\left\{\left(16-4 x^{4}\right) \hat{\imath}-\left(8 x-4 x^{3}\right) \hat{\jmath}+\left(16-8 x^{2}\right) \hat{k}\right\} d x \\
& =\left[\left(16 x-\frac{4 x^{5}}{5}\right) \hat{\imath}-\left(8 \frac{x^{2}}{2}-\frac{4 x^{4}}{4}\right) \hat{\jmath}+\left(16 x-\frac{8 x^{3}}{3}\right) \hat{k}\right]_{0}^{2} \\
& =\left[\left(16 x-\frac{4 x^{5} 5}{5}\right) \hat{\imath}-\left(4 x^{2}-x^{4}\right) \hat{\jmath}+\left(16 x-\frac{8}{3} x^{3}\right) k\right]_{0}^{2} \\
& \left(32-\frac{128}{5} \hat{\imath}-(16-16) \hat{\jmath}+\left(32-\frac{64}{3}\right) \hat{k}\right. \\
& \begin{array}{r}
\left.=32-\frac{32}{5} \hat{\imath}+\frac{32}{3} \hat{k}=\frac{32}{15}(3 \hat{\imath}+5 \hat{k})\right) \\
\left.=\frac{3}{3}\right)
\end{array}
\end{aligned}
$$

Green's theorem
Statement: If $\phi(x, y), \psi(x, y), \frac{\partial \phi}{\partial y}$ and $\frac{\partial \psi}{\partial x}$ be continuous functions over a region R bounded by simple closed curve C in $x y$ plane, then

$$
\oint_{c}(\phi d x+\psi d y)=\int_{R}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y \text {. }
$$

Ex 13: Using Greens theorem, evaluate $\oint\left(x^{2} y d x+x^{2} d y\right)$, Where c is the boundary described counter clocinise of the triangle With vertices $(0,0),(1,0),(1,1)$.

Soph: By Greerstheorem, we have

$$
\int_{C}(\Phi d x+\psi d y)=\iint_{R}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \Phi}{\partial y}\right) d x d y
$$

$$
\Rightarrow \oint_{C}\left(x^{2} y d x+x^{2} d y\right)=\int_{R}\left\{\frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}\left(x^{2} y\right)\right\} d x d y
$$

$$
\Rightarrow \int_{0}^{c}\left(x^{2} y d x+x^{2} d y\right)=\int_{x=0}^{1} \int_{y=0}^{x}\left(2 x-x^{2}\right) d y d x
$$

$$
x=0 \quad y=
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(2 x-x^{2}\right) \cdot[y]_{0}^{x} \cdot d x \\
& =\int_{0}^{1}\left(2 x-x^{2}\right) \cdot x \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(2 x^{2}-x^{3}\right) d x \\
& =\left[2 \frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{5}{12}
\end{aligned}
$$

Ex 14: Verify Green's theorem for $\int\left(x y+y^{2}\right) d x+x^{2} d y$, Where c is bounded by $y=x$ and $y=x^{2}$.

Soph: Here, $\Phi=x y+y^{2}, \psi=x^{2}$

$$
\therefore \int_{C}(\varphi d x+\psi d y)=\int_{c_{1}}(\varphi d x+\psi d y)+\int_{c_{2}}(\varphi d x+\psi d y)
$$

Along $c_{1}, y=x^{2}$ and x varies from 0 to 1 .

$$
\begin{aligned}
& \therefore \int_{0}^{1}\left(x y+y^{2}\right) d x+x^{2} d y=\int\left[f\left(x^{2}\right)+\left(x^{2}\right)^{2}\right\} d x \\
&\left.+x^{2} d\left(x^{2}\right)\right] \\
&=\int_{0}^{1}\left(x^{3}+x^{4}+2 x^{3}\right) d x \\
&=\int_{0}^{1}\left(3 x^{3}+x^{4}\right) d x=\frac{19}{20}
\end{aligned}
$$

Along $c_{2}, y=x$ and x varies from 1 to 0

$$
\begin{aligned}
\therefore \oint_{2}\left(x y+y^{2}\right) d x+x^{2} d y & =\int_{1}^{0}\left\{\left(x \cdot x+x^{2}\right) d x+x^{2} d(x)\right\} \\
& =\int_{1}^{0} 3 x^{2} d x=-1
\end{aligned}
$$

Thus,

$$
\begin{align*}
\int_{c} f(\varphi d x+\psi d y) & =\int^{\int}\left(x y+y^{2}\right) d x+x^{2} d y \\
& c \tag{1}\\
& =\frac{19}{20}-1=-\frac{1}{20}
\end{align*}
$$

Now, by Greens theorem

$$
\begin{aligned}
\int_{C}(\varphi d x+\psi d y) & =\int_{R}\left(\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y\right. \\
& =\int_{R} \int\left\{\frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}\left(x y+y^{2}\right)\right\} d x d y \\
& =\int_{0}^{1} \int_{0}^{x}(2 x-x-2 y) d y d x \\
x & =\int_{0}^{y-x^{2}} x^{2}(x-2 y) d y d x \\
& =\int_{0}^{1}\left[x y-y^{2}\right]_{x^{2}}^{x} \cdot d x \\
& =\int_{0}^{1}\left(x^{2}-x^{2}-x^{3}+x^{4}\right) d x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{0}^{1}\left(x^{4}-x^{3}\right) d x \\
& =\left[\frac{x^{5}}{5}-\frac{x^{4}}{4}\right]_{0}^{1} \\
& =\frac{1}{5}-\frac{1}{4}=-\frac{1}{20} \tag{2}
\end{align*}
$$

Hence, Green's theorem is verified from the equality of (1) and (2).
Ix 15: verify Greens theorem in the plane for $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, Where c is the boundary of the region bounded by $x \geqslant 0, y \leq 0$ and $2 x-3 y=6$
Soph.

Along $O B, x=0$ and y varies from 0 to -2

$$
\begin{aligned}
& \therefore \quad \int_{O B}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =\int_{0}^{-2}\left\{3(0)^{2}-8 y^{2}\right\} d(0)+\{4 y-6(0) y\} d y \\
& \quad=\int_{0}^{-2} 4 y d y=\left[2 y^{2}\right]_{0}^{-2}=8
\end{aligned}
$$

Along $B A, x=\frac{6+3 y}{2}$ and y varies from -2 to 0

$$
\begin{aligned}
& \therefore d x=\frac{3}{2} d y \\
& \therefore \int_{-2}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =\int_{-2}^{0}\left\{3\left(\frac{6+3 y}{2}\right)^{2}-8 y^{2}\right\} \frac{3}{2} d y+\left\{4 y-6\left(\frac{6+3 y}{2}\right) y\right\} d y \\
& =\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-12 y^{2}+4 y-18 y-9 y^{2}\right] d y \\
& =\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-21 y^{2}-14 y\right] d y \\
& =\left[\frac{9}{8} \frac{(6+3 y)^{3}-21 y^{3}}{3}-14 y^{2} \frac{y^{2}}{2}\right]_{-2}^{0} \\
& =\left[\frac{1}{8}(6+3 y)^{3}-7 y^{3}-7 y^{2}\right]_{-2}^{0} \\
& = \\
& =\frac{6^{3}}{8}-56+28 \\
& = \\
& =-1
\end{aligned}
$$

Along $A O, y=0$ and x varies from 3 to 0 .

$$
\begin{aligned}
\therefore & \int_{A_{0}}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
= & \int_{3}^{0}\left(3 x^{2}-0\right) d x+(0) d(0) \\
& =\left[x^{3}\right]_{3}^{0}=-27
\end{aligned}
$$

$$
\begin{align*}
& \therefore \oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =8-1-27 \\
& =-20 . \tag{0}
\end{align*}
$$

Now, by Grechistherem, De have.

$$
\begin{align*}
& \oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \\
& =\iint_{R}\left[\frac{\partial}{\partial x}(4 y-6 x y)-\frac{\partial}{\partial y}\left(3 x^{2}-8 y^{2}\right)\right] d x d y \\
& =\iint_{R}(-6 y+16 y) d x d y \\
& =\iint_{D} 10 y d x d y \\
& =10 \int_{0}^{3} \int_{2 x-6}^{0} \cdot y d y d x \\
& =10 \int_{0}^{3} d x\left[\frac{y^{2}}{2}\right]_{\frac{2 x-6}{3}}^{0} \\
& =10 \cdot \int_{0}^{3}\left(-\frac{1}{2}\right) \frac{(2 x-6)^{2}}{9} d x \\
& =-\left.\frac{5}{9} \cdot \frac{(2 x-6)^{3}}{3 \times 2}\right|_{0} ^{3} \\
& =-\frac{5}{54}\left(0+6^{3}\right) \tag{2}\\
& =-20 \text {. }
\end{align*}
$$

\therefore Gree in theorem Verified.

Ex 16: Using Greens theorem, evaluate $\phi(y-\sin x) d x$ $+\cos x d y$, where c is the plane triangle enclosed by the lines $y=0, x=\pi / 2$ and $y=\frac{2}{\pi} x$.
Sol': Here, $\phi=y-\sin x$

$$
\psi=\cos x
$$

By Greens theorem,

$$
\begin{aligned}
& \oint^{\oint}(y-\sin x) d x+\cos y d y \\
&=\int_{R}\left\{\frac{\partial}{\partial x}(\cos x)-\frac{\partial}{\partial y}(y-\sin x)\right\} d x d y \\
&=\int_{x=0}^{\pi / 2} \int_{y=0}^{\frac{2 x}{\pi}}(-\sin x-1) d y d x \\
&=-\int_{0}^{\pi / 2}(\sin x+1) \cdot[y]_{0}^{\frac{2 x}{\pi}} d x \\
&=-\int_{0}^{\pi / 2}(\sin x+1) \cdot \frac{2 x}{\pi} \cdot d x \\
&=-\frac{2}{\pi} \int_{0}^{\pi / 2} x(\sin x+1) \cdot d x \\
&=-\frac{2}{\pi}\left\{\left.x(-\cos x+x)\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} 1 \cdot(-\cos x+x) d x y\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{\pi}\left\{\frac{\pi^{2}}{4}-\left[-\sin x+\frac{x^{2}}{2}\right]_{0}^{\pi / 2}\right\} \\
& =-\pi / 2+\frac{2}{\pi}\left(-1+\frac{\pi^{2}}{8}\right) \\
& =-\left(\pi / 4+\frac{2}{\pi}\right)
\end{aligned}
$$

Ex 7: Apply Greens theorem to evaluate

$$
\int_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right] \text {, where } c \text { in the }
$$

boundary of the area enclosed by the x-axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$.
Soft': By Green's harem,

$$
\begin{aligned}
& \dot{G}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right] \\
& =\iint_{A}\left[\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)-\frac{\partial}{\partial y}\left(2 x^{2}-y^{2}\right)\right] d x d y \\
& =\int_{A} 2(x+y) d x d y
\end{aligned}
$$

Let $x=r \cos \theta, y=r \sin \theta$
Then, r varies from 0 to a θ varies firm o to π and $d x \cdot d y=r d r d \theta$

$$
\begin{array}{r}
\therefore \int\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y \\
c=2 \int_{0}^{a} \int_{0}^{\pi} r(\cos \theta+\sin \theta) \cdot r d r d \theta \\
=2 \int_{0}^{a} r^{2} d r \cdot \int_{0}^{\pi}(\cos \theta+\sin \theta) d \theta=\frac{4 a^{3}}{3} .
\end{array}
$$

Stoke's theorem (Relation between line and surface integrates)
If S be an open surface bounded by a closed curve C and $\vec{F}=f_{1} \hat{\imath}+f_{2} \hat{\jmath}+f_{3} \hat{K}$ be any continuously differentiable vector point function, then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{s} \operatorname{curl} \vec{F} \cdot \hat{n} d s
$$

Where, $\hat{n}=\operatorname{Cos} \alpha \hat{i}+\operatorname{Cos} \beta \hat{j}+\operatorname{Cos} y k$ is annitexternal normal to any surface $d s$.

Ex 18: Using Stoke's theorem, evaluate

$$
\oint_{C}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right] \text {, where } C \text { is }
$$

the circle $x^{2}+y^{2}=1$, corresponding to the surface of sphere of unit radius.

So ln:

$$
\begin{aligned}
& \oint(2 x-y) d x-y z^{2} d y-y^{2} z d z \\
& c=\oint_{c}\left[(2 x-y) \hat{\imath}-y z^{2} \hat{\jmath}-y^{2} z \hat{k}\right] \cdot[d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k}]
\end{aligned}
$$

By Stoke's theorem,

$$
\begin{equation*}
\oint_{c} \vec{F} \cdot d \vec{r}=\iint_{s} c_{n r l} \vec{F} \hat{n} d s \text {. } \tag{1}
\end{equation*}
$$

$$
\text { curl } \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x-y & -y z^{2} & -y^{2} z
\end{array}\right|
$$

$$
\text { Here } d s=\frac{d x d y}{|\hat{k}|}
$$

putting the value of curd \vec{F} in (1), the get

$$
\begin{aligned}
\oint \vec{F} \cdot d \vec{r} & =\iint_{s} \vec{F} \cdot \hat{n} d s \\
& =\iint_{S} \hat{k} \cdot \hat{r} \cdot \frac{d x d y}{\hat{n} \hat{k}} \\
& =\iint_{s} d x d y
\end{aligned}
$$

$=$ Area of the circle of unit andim

$$
\begin{aligned}
& =\pi(1)^{2} \\
& =\pi
\end{aligned}
$$

Ex 19: Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \uparrow-2 x y \hat{\rho}$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
Sorn: Let $A B C D$ be the given rectangle.

$$
\oint_{A B C D} \vec{F} \cdot d \vec{r}=\int_{A B} \vec{F} d \vec{r}+\int_{B C \quad} \vec{F} d \vec{r}+\int_{D A} \vec{F} d r+\int_{D A} \vec{F} d \vec{r}
$$

And $\vec{F} \cdot d \vec{r}=\left[\left(x^{2}+y^{2} \hat{\imath}-2 x y \hat{\jmath}\right] \cdot(d x \hat{\imath}+d y \hat{\jmath})\right.$

$$
=\left(x^{2}+y^{2}\right) d x-2 x y d y
$$

Along $A B, x=a \quad(i . e, d x=0)$ and y varies from 0 to b.

$$
\begin{aligned}
\therefore \int_{A B} \vec{F} \cdot d \vec{r} & =\int_{0}^{b}\left(a^{2}+y^{2}\right) d(0)-2(a) y \cdot d y \\
& =\int_{0}^{b}-2 a y d y \\
& =-2 a \cdot\left[\frac{y^{2}}{2}\right]_{0}^{b} \\
& =-a b^{2}
\end{aligned}
$$

Along $B C, y=b($ ie, $d y=0)$ and x varies from

$$
\begin{aligned}
a & \text { to }(-a)-a \\
\therefore \int_{B C} \vec{F} \cdot d \vec{r} & =\int_{a}^{-a}\left(x^{2}+b^{2}\right) d x \\
& =\left[\frac{x^{3}}{3}+b^{2} x\right]_{a}^{-a} \\
& =-\frac{2 a^{3}}{3}-2 a b^{2}
\end{aligned}
$$

Along $C D, x=-a$ and y varies from b to 0 .

$$
\begin{aligned}
\therefore \int_{C D} \vec{F} \cdot d \vec{r} & =\int_{b}^{0} 2 a y d y \\
& =2 a\left[\frac{y^{2}}{2}\right]_{b}^{0} \\
& =-a b^{2}
\end{aligned}
$$

Along DA, $y=0$ and x varies from - a to a

$$
\begin{aligned}
\therefore \int_{D A} \vec{F} \cdot d \vec{r} & =\int^{a} \cdot\left(x^{2}+0^{2}\right) d x \\
& -a \\
& =\left[\frac{x^{3}}{3}\right]_{-a}^{a} \\
& =\frac{2 a^{3}}{3}
\end{aligned}
$$

Thus $\begin{aligned} \int_{A B C D} \vec{F} \cdot d \vec{r} & =\left(-a b^{2}-\frac{2 a^{3}}{3}-2 a b^{2}-a b^{2}+\frac{2 a^{3}}{3}\right) \\ & =-4 a b^{2}\end{aligned}$

Now

$$
\begin{align*}
\text { carl } \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y^{2} & -2 x y & 0
\end{array}\right| \tag{1}\\
& =\hat{T}(0-0)-\hat{\jmath}(0-0)+\hat{k}(-2 y-2 y) \\
& =-4 y \hat{k}
\end{align*}
$$

$$
\begin{aligned}
& \therefore \quad \iint_{S} \operatorname{cose} \vec{F} \cdot \hat{k} d s \\
&=\iint_{x=0}(-4 y \hat{k}) \hat{k} d x d y \\
&=\int_{-a}^{b} \int_{-a}^{a}-4 y \cdot d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =-4 \int_{x=-a}^{a} \int_{y=0}^{b} y d y \cdot d x \\
& =-4 \int_{-a}^{a}\left[\frac{y^{2}}{2}\right]_{0}^{b} \cdot d x \\
& =-4 \cdot \int_{-a}^{a} \frac{b^{2}}{2} \cdot d x \\
& =-2 b^{2} \int_{-a}^{a} \cdot d x \\
& =-2 b^{2} \cdot[x]_{-a}^{a} \\
& =-4 a b^{2} .
\end{aligned}
$$

Ex 20: Evaluate $\int_{c} \vec{F} \cdot d \vec{r}$, where $\vec{F}=-y^{2} \hat{i}+x \hat{\jmath}+z^{2} \hat{K}$, and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$.
Sol:

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{s} \operatorname{urrl} \vec{F} \cdot d \hat{r} d s \\
& =\iint_{s}(\nabla \times \vec{F}) \cdot \hat{n} d s . \\
\text { curl } \vec{F} & =\left\lvert\, \begin{array}{ccc}
\hat{i} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^{2} & x & z^{2} \\
& =\hat{\imath}(0-0)-\hat{j}(0-0)+\hat{k}(1+2 y) \\
& =(1+2 y) \hat{k}
\end{array}\right.
\end{aligned}
$$

The given plane is $y+z-2=0$
Normal vector $=\nabla Q$

$$
\begin{aligned}
& \qquad=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(y+z-2) \\
& = \\
& =\hat{\imath}(0)+\hat{\jmath}(1)+\hat{k}(1) \\
& =\hat{\jmath}+\hat{k} \\
& \therefore \text { unit aral vector } \hat{n}=\frac{\hat{j}+\hat{k}}{\sqrt{1+1}}=\frac{\hat{\jmath}+\hat{k}}{\sqrt{2}}
\end{aligned}
$$

$$
d s=\frac{d x d y}{|\hat{\hbar} \hat{k}|}
$$

$$
\hat{n} \hat{k}=\frac{\hat{j}+\hat{k}}{\sqrt{2}} \cdot \hat{k}=\frac{1}{\sqrt{2}}
$$

$$
\therefore \int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(1+2 y) \hat{k} \frac{(\hat{J}+\hat{x})}{\sqrt{2}} \cdot \frac{d x d y}{\frac{1}{\sqrt{2}}}{\frac{x}{}{ }^{2}+y^{2}=1}^{x}
$$

$$
=\iint_{S}(1+2 y) \cdot \frac{1}{\sqrt{2}} \cdot \sqrt{2} \cdot d x d y
$$

$$
=\int_{S}^{S} \int_{S}(1+2 y) d x d y
$$

Let $x=r^{\cos \theta,} y=r \sin \theta$
Then $d x d y=r d r d \theta$
r varies from o to 1
θ varies from 0 to 2π.

Gauss Divergence Theorem
(Relation between surface and volume integrals)
Statement: The surface integral of the normal component of a vector function \vec{F} taken around a closed surface S is equal to the integral of the divergence of \vec{F} taken over the volume V endorsed log the surface S. Mathematically, $\iint_{S} \vec{F} \cdot \hat{h} d s=\iiint_{V} \operatorname{div} \vec{F} \cdot d v$

Ex.22: Use Gauss divergence theorem to show that

$$
\iint_{S} \nabla\left(x^{2}+y^{2}+z^{2}\right) d \delta=6 V \text {, where sis any }
$$ closed surface enclosing volume V.

Sol ${ }^{h}$: Here $\nabla\left(x^{2}+y^{2}+z^{2}\right)=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}\right)$

$$
\begin{aligned}
& =2 x \hat{\imath}+2 y \hat{\jmath}+22 \hat{k} \\
& =2(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) .
\end{aligned}
$$

$$
\begin{aligned}
\therefore \iint_{S} \nabla\left(x^{2}+y^{2}+z^{2}\right) \cdot d \delta & =\iint_{S} \nabla\left(x^{2}+y^{2}+z^{2}\right) \cdot \hat{n} d s \\
& =\iint_{S} 2(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \hat{h} d s \\
& =2 \iint_{V} \operatorname{div}(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) d v
\end{aligned}
$$

wring Divergegna these

Now, $\operatorname{div}(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=\left(\uparrow \frac{\partial}{\partial x}+\hat{\partial} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(x \hat{\imath}+y \hat{\jmath}+z \hat{k})$

$$
\begin{align*}
& =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z} \\
& =3 \tag{2}
\end{align*}
$$

from (1) and (2), we have

$$
\begin{aligned}
\iint_{S} V\left(x^{2}+y^{2}+z^{2}\right) d s & =2 \iiint_{V} 3 \cdot d v \\
& =6 \iiint_{V} d v \\
& =6 \mathrm{~V} .
\end{aligned}
$$

Ex .23: Use Gauss divergence theorem to evaluate

$$
\iint_{S} \vec{F} \cdot d \vec{S} \text {, where, } \vec{F}=4 x \uparrow-2 y^{2} \hat{\jmath}+z^{2} \hat{k} \text { and } S
$$

is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$.
Solis By Divergence theorem,

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d S & =\iiint_{V} \operatorname{div} \vec{F} \cdot d v \\
& =\int\left(\int_{V}\left(\hat{\imath} \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\hat{\lambda} \frac{\partial}{\partial z}\right) \cdot\left(4 x \uparrow-2 y^{\top} \hat{\jmath}+z^{2} k\right) \cdot d v\right. \\
& =\iiint_{V}(4-4 y+2 z) \cdot d v \\
& =\iiint_{1}(4-4 y+2 z) d x d y d z
\end{aligned}
$$

$$
\begin{align*}
& =\iint_{0} d x d y \int_{0}^{3}(4-4 y+2 z) d z \\
& =\iint d x d y \cdot\left[4 z-4 y z+z^{2}\right]_{0}^{3} \\
& =\iint(12-12 y+9) d x d y \\
& =\iint(21-12 y) d x d y \tag{0}
\end{align*}
$$

Let $R x=r \cos \theta$

$$
\begin{aligned}
y & =r \sin \theta \\
\therefore d x d y & =r d r d \theta
\end{aligned}
$$

r varies from o to 2
θ varies from otto 2π.

\therefore (1) becomes,

$$
\begin{aligned}
\int_{S} \int_{\vec{F}} \vec{F} \cdot d s & =\int_{r=0}^{2}((21-12 r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} \cdot \int_{r=0}^{2 \pi}\left(21 r-12 r^{2} \sin \theta\right) \cdot d r \cdot d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{21 r^{2}}{2}-4 r^{3} \sin \theta\right]_{0}^{2} \cdot d \theta \\
& =\int_{0}^{2 \pi} \cdot(42-32 \sin \theta) d \theta \\
& =[42 \theta+32 \cos \theta]_{0}^{2 \pi} \\
& =84 \pi-32+32=84 \pi
\end{aligned}
$$

Ex: 24 : Verify Gauss divergence theorem for

$$
\vec{F}=\left(x^{2}-y z\right) \uparrow+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k} \text { taken }
$$

over the rectangular parallelopiped $0 \leq x \leq a$, $0 \leq y \leq b, 0 \leq z \leq c$.
Sod': De have.

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{R} \frac{\partial}{\partial z}\right)\left\{\begin{array}{c}
\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath} \\
\left.+\left(z^{2}-x y\right) \hat{k}\right\}
\end{array}\right. \\
& \left.+\left(z^{2}-x y\right) \hat{k}\right\} \\
& =\frac{\partial}{\partial x}\left(x^{2}-y z\right)+\frac{\partial}{\partial y}\left(y^{2}-z x\right)+\frac{\partial}{\partial z}\left(z^{2}-x y\right) \\
& =2 x+2 y+2 z \\
& =2(x+y+z) \text {. } \\
& \therefore \text { volume Integral }=\iiint_{V} \nabla \vec{F} \cdot d v \\
& =\iiint 2(x+y+z) d v \\
& =2 \int_{x=0}^{a} \int_{y=0}^{b} \int_{z=0}^{c}(x+y+z) \cdot d x d y d z \\
& =2 \int_{x=0}^{a} \int_{y=0}^{b} \cdot \int_{z=0}^{c}(x+y+z) d z \cdot d y \cdot d x \\
& =2 \int_{x=0}^{a} \int_{y=0}^{b}\left[x z+y z+\frac{z^{2}}{2}\right]_{0}^{c} \cdot d y d x \\
& =2 \int_{x=0}^{x=0} \int_{y=0}^{y}\left(c x+c y+\frac{c^{2}}{2}\right) \cdot d y \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{0}^{a}\left[c x y+\frac{c y^{2}}{2}+\frac{c^{2} y}{2}\right]_{0}^{b} \cdot d x \\
& =2 \int_{0}^{a}\left(b c x+\frac{b c}{2}+\frac{b c^{2}}{2}\right) d x \\
& =2\left[b c \frac{x^{2}}{2}+\frac{b^{2} c}{2} x^{2}-\frac{b c^{2}}{2} x\right]_{0}^{a} \\
& =2\left[b c \cdot \frac{a^{2}}{2}+\frac{b^{2} c a^{2}}{2}+\frac{b c^{2}}{2} a\right] \\
& =a^{2} b c+a b^{2} c+a b c^{2} \\
& =a b c(a+b+c) .
\end{aligned}
$$

$$
\begin{gathered}
x \\
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{O A B C} \vec{F} \cdot \hat{n} d s+\iint_{D E F G} \vec{F} \cdot \hat{n} d s \\
+\iint_{O A F G} \vec{F} \cdot \hat{n} d s+\iint_{B C D E} \vec{F} \cdot \hat{n} d s+\iint_{A B E F} \vec{F} \cdot \hat{n} d s \\
+\iint_{O C D G} \vec{F} \cdot \hat{n} d s
\end{gathered}
$$

Surface	ontriard normal	$d s$	
OABC	\hat{k}	$d x d y$	$z=0$
DEFG	\hat{k}	$d x d y$	$z=c$
OAFG	$-\hat{j}$	$d x d z$	$y=0$
BCDF	\hat{j}	$d x d z$	$y=b$
ABEF	\hat{i}	$d y d z$	$x=a$
OCDG	$-\hat{i}$	$d y d z$	$x=0$.

GhoABe,

$$
\begin{align*}
& \iint_{O A B C}^{\vec{F} \cdot \hat{r} d s}=\iint_{O A B C}\left\{\left(x^{2}-y z\right) \hat{\jmath}+\left(y^{2}-x z\right) \hat{\jmath}+\right. \\
& \left.\left(z^{2}-x y\right) \hat{k}\right\}(-\hat{k}) \cdot d x d \\
& =-\int_{0}^{a} \int_{0}^{b}\left(z^{2}-x y\right) \cdot d x d y \\
& =-\int_{0}^{a} \int_{0}^{b}(-x y) d x d y \quad[\because z=0] \\
& =\frac{a^{2} b^{2}}{4}
\end{align*}
$$

on DEFG,

$$
\left.\begin{array}{rl}
\int_{\text {DEFG }} \vec{F} \cdot \hat{n} d s=\iint_{D E F G} \\
& =\int_{0}^{a} \int_{0}^{b}\left(z^{2}-x y\right) d x d y \\
\left.+\left(z^{2}-x y\right) \hat{k}\right\} \hat{k} d x+y
\end{array}\right\}
$$

An. $\int_{\text {OAFG }} \overrightarrow{F i n} d s=\iint_{\text {OAFG }}\left\{\left(x^{2}-y_{z}\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y \hat{k}\right\}\right\}^{2}+\hat{y}$

$$
\begin{align*}
& =-\iint_{O A F G}\left(y^{2}-z x\right) d x d z \\
& =-\int_{0}^{a} \int_{0}^{c}(0-z x) d x d z \\
& =-\int_{0}^{a} \cdot\left[\frac{x z^{2}}{2}\right]_{0}^{c} \cdot d x \\
& =-\int_{0}^{a} \frac{x c^{2}}{2} d x \\
& =-\left[c^{2} \frac{x^{2}}{4}\right]_{0}^{a}=\frac{a^{2} c^{2}}{4} \tag{3}\\
& \int_{\text {BCDE }} \vec{F} \hat{n} d s=\iint_{\text {BCDE }}\left\{\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}\right\} \hat{j} d x d z \\
& \begin{array}{l}
=\int_{B C D E} \int_{0}\left(y^{2}-x z\right) d x d z \\
=\int_{0}^{a} \int_{0}^{c}\left(b^{2}-x z\right) d x d z
\end{array} \\
& =\int_{0}^{a}\left[b^{2} z-x \frac{z^{2}}{2}\right]_{0}^{c} \cdot d x \\
& =\int_{0}^{a}\left(b^{2} c-\frac{x c^{2}}{2}\right) \cdot d x \\
& =\left[b c x-\frac{x^{2} c^{2}}{4}\right]_{0}^{a} \\
& =a b^{2} c-\frac{a^{2} c^{2}}{4} \text {. } \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{c}
\int_{A B E F} \vec{F} \cdot \hat{n} d s=\iint_{A B E F}\left\{(x-y z) \hat{i}+\left(y^{2}-x z\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}\right\} \\
\cdot \hat{\imath} d y d z
\end{array} \\
& =\iint_{\text {AREF }}\left(x^{2}-y z\right) d y d z \\
& =\int_{0}^{b} \int_{z=0}^{e}\left(a^{2}-y_{2}\right) d y d z \quad[\because x=a] \\
& =\int_{0}^{b}\left[a^{2} z-y \frac{z^{2}}{L}\right]_{0}^{c} d y \\
& =\int^{b}\left(a^{2} c-\frac{y c^{2}}{L}\right) d y \\
& =\left[a^{2} c y-\frac{c^{2} y^{2}}{4}\right]_{0}^{b} \\
& =a^{2} b c-\frac{c^{2} b^{2}}{4} \\
& \int_{O C D G} \vec{F} \cdot \hat{r} d s=\iint_{O C D G}\left\{\left(x^{2}-y z\right) \uparrow+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}\right\}(-\hat{1}) d y d z \\
& =\int_{0=0}^{b} \int^{c}\left(x^{2}-y z\right) \cdot d y d z \\
& =a \quad \int_{y=0}^{b} \cdot \int_{0}^{c}(-y z) d z \cdot d y \\
& =-\int_{0}^{b} \cdot\left[y \frac{z^{2}}{2}\right]_{0}^{e} \cdot d y \\
& =-\int_{0}^{b} \frac{y^{2}}{2} \cdot d y=\frac{b^{2} c^{2}}{4} \text {. }
\end{align*}
$$

$$
\begin{aligned}
& +\left(\frac{b^{2}}{4}\right)+\left(a^{2} b c-\frac{b^{2} c^{2}}{f}\right) \\
& =a b c^{2}+a b c+a^{2} b^{4}=a b c(a+b+c) \text {. }
\end{aligned}
$$

