Government College of Engineering, Keonjhar

Lecture Notes

Module-3

Vector Differential Calculus

vector and scalar functions and fields, Derivatives, Curves, tangents and arc Length, gradient, divergence, curl

Vector function: If a vector \vec{F} is a function of a scalar variable t, then we write $\vec{F} = \vec{F}(t)$

If the components of F(t) along x-anis, y-anis and z-anis are $f_1(t)$, $f_2(t)$, $f_3(t)$ respectively. Then $F(t) = f_1(t) \uparrow + f_2(t) \uparrow + f_3(t) \uparrow k$.

Differentiation of vectors:

We define derivative of a vector function $\vec{F}(t)$ as $d\vec{F} = \Delta t + \vec{F}(t+\delta t) - \vec{F}(t)$ $d\vec{F} = \delta t \to 0$

General rules of differentiation!

If q is a scalar function and F, G, H are vector functions, then

= 1 (+38nt) +5 (-+30+-3050) +û (5+25int -+0st) $+ 7 \left(-37 \cos t\right) + 7 \left(-37 \sin t - 0\right)$ +2(-10+Gst-Stut) = (13 Sint-34 Cost) 7-12(+Cost+38int) 3 +[(5+2-1) 8nd-11+(35) R Scalar and vector point function: If to each point P(x,y, z) of a region R in space there corresponds a unique sealar f(P), then f is called a scalar point function. Ex: Temperature distribution in a heated body density of a body and potential due to gravily are examples of scalar point function If to each point P(xy, 2) of a region R in space there corresponds a unique vector f(P), then of is called a vector point function Ex: The velocity of a moving finid, gravitational force are the examples of a rector point function.

Vector Differential operator Del (V); The vector differential operator Del is denoted by V and is defined by V = 1 3 + 1 3 + R 3 = Gradient of a scalar function: If $\phi(\alpha, y, z)$ be a scalar function, then 1 20 + 1 20 + 12 37 is called The gradient of the scalar function of and is denoted by grad of or V.A Thus, goad p = v. p = (î 3 + 5 3 + kg) 9 = 1 39 + 1 30 + 1 30 = 1 30 + 1 30 + 1 30

Hormal and Directional derivative.

(i) Normal! If $\varphi(x,y,z) = c$ represents a family of surfaces for different values of the constant c, on differentiating φ be get $d\varphi = 0$ But $d\varphi = \nabla \cdot \varphi \cdot d\vec{r}$ So, $\nabla \varphi \cdot d\vec{r} = 0$.

The scalar product of two vectors vq and dr being zero, to and dr are peopendicular to each other. It is the direction of tangent to the given surface. thus vep is the vector normal to the surface

Q(N,Y,Z)=C.

(i) Directional Derivative!

The component of TO in the direction of a vector of is equal to vq. I and is called the disectional derivative of of in the disection of of

If $\phi = 3xy - y^3z^2$, find grad ϕ at the point (1,-2,-1).

Soth: Good & = VQ = 1 30 +5 30 + 1 30 = 1 × 30 =1 = (3xy-y3z2) +5 = (3xy-y3z2) + R = (3xy-y372) 1 (62y) +5 (3x2-3y22)+K (-2y32) : grad p at (1-2,-1) = VP (1-2,-1) $= \frac{1}{6(1)(-2)} + \frac{1}{3(1)} + \frac{1}{3(1)}$ = -127-95-16R

$$= -\frac{1}{r^{3}} \left(x \hat{1} + y \hat{5} + 2 \hat{k} \right)$$

$$= -\frac{2}{r^{3}}.$$
Ex: Prove that $\nabla r^{n} = nr^{n-2}r^{2}$, where $\vec{r} = xr + y + z^{2}$

$$\therefore r^{n} = \left(x + y + z^{2} \right)^{n/2}$$

$$= \frac{2}{r^{2}} \left(x + y + z^{2} \right)^{n/2}$$

$$= \frac{2}{r^{2}} \left(x + y + z^{2} \right)^{n/2}$$

$$= \frac{2}{r^{2}} \left(x + y + z^{2} \right)^{n/2}.$$

$$= n \times \left(x^{2} + y + z^{2} \right)^{n/2}$$

$$= n \times \left(x^{2} + y + z^{2} \right)^{n/2}$$

$$= n \times r^{n-2}.$$
Similarly, $\frac{2r^{n}}{2r} = ny r^{n-2}$

$$= n \times r^{n-2}.$$

$$= r^{n/2} \left(r^{n} \right) + \frac{2}{r^{2}} \frac{3r}{r^{2}} + \frac{3r}{r^{2}} \right) r^{n}$$

$$= r^{n/2} \left(r^{n} \right) + \frac{2}{r^{2}} \frac{3r}{r^{2}} + \frac{3r}{r^{2}} \right) r^{n}$$

$$= r^{n/2} \left(x^{n} + y^{n} + x^{n} \right) + \frac{3}{r^{2}} \left(r^{n} \right)$$

$$= r^{n/2} \left(x^{n} + y^{n} + x^{n} \right)$$

$$= n r^{n/2} \left(x^{n} + y^{n} + x^{n} \right)$$

$$= n r^{n/2} \left(x^{n} + y^{n} + x^{n} \right)$$

Scanned by CamScanner

Ex! Find the directional derivative of p(x,y,z)= x2yz+4xz2 at (1,-2,1) in the direction of 21-j-27. 18 Soph! Herse, $\phi = xyz + 4az^2$:. V9 = (1 & +5 & + F &) (xy2+4x22) - 1 ox (xyz+4xz2)+Joy (xyz+4xz2) + R & (2/2+4xZ2) = (2xyz+4z2) + (xz) + (xy+8xz) F Now, $\nabla \varphi = \left\{ 2(1)(-2)(1) + 4(1)^{2} + (1\times1)^{2} + \left\{ 1(-2) + 8(1)(1) \right\} \right\}$ = 1+62 unit vector $\hat{a} = \frac{2\hat{1} - \hat{j} - 2\hat{k}}{2\hat{k}}$ 1(2)+(-1)2+(-2)2 = \frac{1}{2} \left(29-9-2k \right) : The directional derivative of \$ in the direction of 27-5-2k is given by. $\nabla q \cdot \hat{q} = (3 + 6\hat{k}) \cdot (29 - 5 - 2\hat{k})$ $=\frac{1}{3}\left(-1-12\right)=-\frac{13}{2}$

Ex: Find the directional derivative of the function Ф(x,y,z)= x2-y2+2z2 at the point P(1,2,3) in The direction of the line Po where g is the point (5,04) Soth: Herse, P = x-y+222 :. VP = (1 = +1 = +1 = + 1 =) (2-y+2z2) = 1 0x (x-y+2zh)+5 0 (x-y+2zh) + R 2 (2-y2+282) = 2x1-2y1+4zk Now, $\nabla \varphi |_{(1,2,3)} = \langle 2(1) \rangle (1 - 2(2))) + \langle 4(3) \rangle \hat{k}$ = $2\hat{1} - 4\hat{1} + 12\hat{k}$ PB = B-P = (51+4R) - (1+3+3R) = 49-29+6 unit nector $\hat{a} = \frac{P8}{|P8|} = \frac{41-25+12}{\sqrt{45+(-2)^2+12}}$ i. Directional derivative of p along po is 四月(123) = (27-分版) (47-37+反) $\frac{8+8+12}{\sqrt{21}} = \frac{28}{\sqrt{21}}$

As: Find the directional derivative of 9= 4e 2x-y+2 at the point (1,1,-1) in the direction towards The point (-3,5,6). Sop: Here, $\phi = 4e^{2x-y+2}$ V9 = (12x+1) 0 + 1x 0) (4e2x-y+2) = 7 0 (4e 2x-y+2) + 50 (4e 2x-y+2) + R. 32 (4e2x-y+7) $= 4 \left[2e^{2x-y+2} - e^{2x-y+2} \right] + e^{2x-y+2}$ = 4 e2x-3+2 (21-)+k). :. VQ at the point (1,1-1) = VQ (1,-1) = 4.e²⁻¹⁻¹·(21-j+k) = 4(29-9+2) Ket P (1,1,-1) and 9 (-3,5,6) Then $\vec{P}\vec{S} = (-3\uparrow + 5) + 6\hat{k} - (\uparrow + 5) - \hat{k}$ - - 47+45+72 unit rector & = -47+45+72 J(-4)~+(4)~+(7)~ -47+49+72 V16+16+49 - (-47+41+7x)

i. Directional derivative in the direction of (-47+49+78) = 00 (1.1.1) = (87-49+42). (-47+49+72) - 400 = -20 Angle between two surfaces let \phi(x,yz)=c, and \(\frac{1}{x},y,z)=c, are two surfaces Let I be the angle between these two surfaces.

Then & Coso = 1,72 17/1/72 where . $\eta = \nabla f_1 |_{Gb,c}$ M2 = Vf2 (a,b,e) and fi= \(\partial (x, y, z) - C_1 f2 = W(x,y, 2)-12

Ex: Find the angle between the surfaces x+y+z=9 and $\chi = \chi + y - 3$ at the point (2, -1, 2). Soph: Let fi= xx+yx=z-9=0 and fo = xx+y2-z-3 = 0 Vf = (1 2 + 5 2 + 2 2) (x7+y2+22-9) = 2x1+2y5+22x $\nabla f_{1}^{\prime}|_{(2,-1,2)} = 4\widehat{1} - 2\widehat{1} + 4\widehat{1}$ Vf2=(12+12+12) (x+y2-2-3) = 2x1+245-2 Vf2 (2-1,2) = 41-29-1 · Let 0 be the angle between the two surfaces Then (2,-1,2).

Then (2,-1,2). $[\eta_1|]\eta_2|$ = (49-25+4R) (41-25-R) JEV-+(-2) -+6 JEV-+(-1) -+601 16+4-4 :. 8 = GF (8)

Divergence of a vector function! The divergence of a vector point function F=fir+f2)+fix is devoted by divf or VF and is defined as dv F= (1 = +) = + 1 = + 1 =) (f1+ f2)+ f2) $= \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$ It is evident that div F 169 Scalar function If div F=0, F is called solenoidal. Curl of a vector point function: The curl of a vector boint function F=fr+6+fix is denoted by curl if or VX i and is defined Curl F = 7xF = (12 + 12 + 22) x (+11+5+12 $= \Im\left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) - \Im\left(\frac{\partial f_3}{\partial x} - \frac{\partial f_1}{\partial z}\right) + \Im\left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$ Const D is a vector quantity. If curl F=0, F is called issolutional weeterfield.

Ex: Find the divergence and curl of the function rector F = xy = 1 + 3xy5 + (x22-y2) R at (2,-1,1). Soft: Here, me have F= xy21+3xy3+(x2-y2)& duF=VF = 3 (xyz) + 3 (3xy) + 3 (x22- yz) = y2 + 3x +2x2-y2div P at (2,-11) = -1+12+4-1=14 Curl F = 1 1 2 3xy (x2-4/2) = 7 /0 (x22-y2) - 82 (3x3)) +3 { 3/2 (xy2) - 3/x (x22-y2) -1x } 8x (3xy) - 8y (nyz) } -2727 + (-22+24)) + (xy-x2) R = -2427 + (ny-22)5 + (6xy-13) K

Const
$$\vec{p}$$
 and $(2-11)$

$$= \{-2(-1)(1)\} \uparrow \uparrow + \{2(-1)\} \not \downarrow \}$$

$$= 2\uparrow -3\uparrow -14 \not \downarrow \lambda$$

$$= 2\uparrow -3\uparrow$$

Scanned by CamScanner

$$= \sqrt{h_3h^{-2} + n_X(n_2) n^{n_3}} \xrightarrow{gr} + \left\{ nr^{n_2} + ny(n_2) r^{n_3} \xrightarrow{gr} \right\} + \left\{ nr^{n_2} + ny(n_2) r^{n_2} \xrightarrow{gr$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{$$

$$= \Gamma(3x-3x) + \Gamma(-2z+3y-3y+2z) + \Gamma(3z+2y-2y-3z)$$

$$= 0.7 + 0.7 + 0.\Gamma$$

$$= 0.$$
Thus, P is involational.

$$= \sqrt{-x(3+6)+7(8+6)} + 6y5 + 2(6-3) \hat{k}$$
Const $\vec{A} = 0$

$$\Rightarrow 3+6=0 \text{ and } 8-b=0, \quad \alpha-3=0$$

$$\Rightarrow \alpha=-3, \quad b=8$$

$$\therefore \alpha=-3,3, \quad b=8$$

Ex: If a vector field is given by $\vec{F} = (x^2 - y^2 + x)^2 - (2xy + y)^2$. Is this field irrotational? If so, find its scalar potential.

Son: F=(x-y+x)r-(2xy+y)5

Cust = DXE

$$= \uparrow \left[0 + \frac{\partial}{\partial z} \left(2xy + y \right) \right] + 5 \left[\frac{\partial}{\partial z} \left(x - y + x \right) - 0 \right] \\
+ i \left[-\frac{\partial}{\partial x} \left(2xy + y \right) - \frac{\partial}{\partial y} \left(x - y + x \right) \right]$$

= 0. Hence P is irrotational.

To find the sector potential function
$$\phi$$
,

 $P = \nabla \cdot \phi$
 $d\phi = \frac{\partial \phi}{\partial x} \cdot dx + \frac{\partial \phi}{\partial y} \cdot dy + \frac{\partial \phi}{\partial z} \cdot dz$
 $= \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial z} \right) + \frac{\partial \phi}{\partial z} \cdot dy + \frac{\partial \phi}{\partial z} \cdot dy$

Ex: Find the scalar potential of for A=ym+2xyg-22k Sort: De home A= y27+2xyg-z2k Curse A = TXA = 1 1 1 = 1 (0) +5 (0) +2 (6) Hence, A is isosotational. To find the scalar potential function f. A= Vf $df = \frac{2}{8\pi} \cdot dx + \frac{2}{8} dy + \frac{2}{8} dz$ = (yr+2xy) q-22k) (dx+dy5+d2k) = y dx +2xydy-zdz :. = | y dx + 2xydy - 2 d2 + C = \d(xyr) - \z2dz + C = my2- 3+C,

Del applied twice to point functions: We have the following five formulae: 1). Liv. gradf = vf = of + of + of + of 2). Curst grad f = Tx Tf = 0. 3) div. Cord F = V. VXF = 0. 4) di Curl Curd F = grad. div. F - D2F i.e., $\nabla \times (\nabla \times \vec{F}) = \nabla \cdot (\nabla \cdot \vec{F}) - \vec{\nabla} \vec{F}$ 5). grad LivF = curl curl F + PF i.e., $\nabla(\nabla \cdot \vec{F}) = \nabla \times (\nabla \times \vec{F}) + \nabla^2 \vec{F}$ Proofs: (1) of = (1 & + 1 & + 1 & 2) f = 125 +2 35 +2 35 V2f= V.(Vf)=(个最好最极景)(强好新规 = 是(影)+ 是(器)+是(器) = of + of + ozz = Dzt V2= 3 + 8 + 8 is called the Laplacian sperator.

Scanned by CamScanner

$$=\frac{\partial}{\partial x}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial f_{4}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)$$

$$+\frac{\partial}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{3}}{\partial y}\right).$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{2}}{\partial x \partial z}+\frac{\partial^{2} f_{1}}{\partial y \partial z}-\frac{\partial^{2} f_{3}}{\partial y \partial x}$$

$$+\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{3}}{\partial z \partial y}$$

$$=\left(\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial y \partial x}\right)+\left(\frac{\partial^{2} f_{1}}{\partial z \partial x}-\frac{\partial^{2} f_{3}}{\partial x \partial y}\right)$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial y \partial x}$$

$$+\left(\frac{\partial^{2} f_{1}}{\partial y \partial z}-\frac{\partial^{2} f_{3}}{\partial x \partial y}\right)$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial y \partial x}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial y \partial x}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x \partial y}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x}$$

$$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{3}}{\partial x}$$

$$=\frac{\partial^{2} f_{3}}{\partial$$

$$= \hat{\Gamma} \left[\frac{\partial}{\partial y} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) - \frac{\partial}{\partial z} \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_2}{\partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial}{\partial z} \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \right) - \frac{\partial}{\partial x} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial}{\partial x} \left(\frac{\partial f_1}{\partial y} - \frac{\partial}{\partial x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f_2}{\partial y} - \frac{\partial}{\partial z} \right) \right]$$

$$= \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial y \partial x} - \frac{\partial^2 f_1}{\partial y \partial x} - \frac{\partial^2 f_1}{\partial y \partial x} - \frac{\partial^2 f_1}{\partial y \partial x} - \frac{\partial^2 f_2}{\partial y \partial x} + \frac{\partial^2 f_1}{\partial y \partial x} \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_1}{\partial x \partial y} - \frac{\partial^2 f_1}{\partial x \partial y} - \frac{\partial^2 f_1}{\partial x \partial y} + \frac{\partial^2 f_1}{\partial y \partial x} \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_1}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_1}{\partial x} + \frac{\partial^2 f_1}{\partial y \partial x} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_1}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x} + \frac{\partial^2 f_2}{\partial y \partial x} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial x} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial y} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x \partial y} - \left(\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y \partial y} \right) \right]$$

$$+ \hat{\Gamma} \left[\frac{\partial^2 f_2}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial x$$

$$= \int_{-\infty}^{\infty} \left(\operatorname{div} \vec{F} \right) - \nabla^{2} f_{1} \right]$$

$$+ \int_{0}^{\infty} \left[\frac{\partial}{\partial y} \left(\operatorname{div} \vec{F} \right) - \nabla^{2} f_{2} \right]$$

$$+ \left(\frac{\partial}{\partial z} \left(\operatorname{div} \vec{F} \right) - \nabla^{2} f_{3} \right]$$

$$= \left(\frac{\partial}{\partial x} + \int_{0}^{\infty} \frac{\partial}{\partial y} + i \frac{\partial}{\partial z} \right) \operatorname{div} \vec{F}$$

$$- \nabla^{2} \left(f_{1} + f_{2} \right) + f_{3} i \hat{x}$$

$$= \nabla \cdot \left(\nabla \vec{F} \right) - \nabla^{2} \vec{F}$$

$$= \operatorname{grad. div} \vec{F} - \nabla^{2} \vec{F}$$

$$\therefore \operatorname{grad. div} \vec{F} = \operatorname{grad. div} \vec{F} + \nabla^{2} \vec{F}$$

$$\therefore \operatorname{grad. div} \vec{F} = \operatorname{curl. curd.} \vec{F} + \nabla^{2} \vec{F}$$

$$i.e. \ \nabla \left(\nabla \cdot \vec{F} \right) = \nabla \times \left(\nabla \times \vec{F} \right) + \nabla^{2} \vec{F}$$

Government College of Engineering, Keonjhar

Lecture Notes

Module-4

Vector Integral Calculus

Line Integrals, Green Theorem, Surface integrals, Gauss theorem and Stokes Theorem (Without Proof)

Integration of vectors If two vectors F(+) and G(+) be such that dG(+) = F(+) then G(+) is called an integral of F(+) and we WME (F(+) d4 = G(+). Its definite integral is (FH) H = G(b)-G(a) Ex1: Given R(+) = 317++5-+32, evaluate (RX dir) dt. Here R(+) = 3f7+5-13k : dR(+) = 6+7+5-37k JR = 67-6+R $\therefore \mathbb{R} \times \frac{d\mathbb{R}}{dt} = \begin{vmatrix} \uparrow & \uparrow & \uparrow \\ 3t^2 & + & -t^3 \end{vmatrix}$ 6 - 6+ $= 7(-6+^{2}-0) + 5(-6+^{3}+18+^{3}) + 12(0-6+)$ = 6+2+12+39-6+R How. (Rx arr) dt = (6+7+12+3)-6+2) dt = [-6+3/+ 12+4-672] -21+31-32

Line Inligral: Net F(x,y,z) be a vector function and AB be a given curve. Line Integral of the vector function F' along he curve AB is defined as integral of the component of F along the tangent to the curve AB. : Line Intégral = (F. dr. Note: If I represents the variable force acting on a particle along are AB, then the total Nork done = (F.d? Ex2: Evaluate (7.48, Where 7=27+xy) and c is the boundary of the square in the plane Z = 0 and bounded by the lines x = 0, y = 0, M= a and y=a.

Fide =
$$\int \vec{P} \cdot d\vec{r} + \int \vec{P} \cdot d\vec{r}$$

 $\operatorname{BC} = \int x dx = \left[\frac{x^3}{3}\right]_{Q}^{Q} = -\frac{Q^3}{3}$ on co, x=0 i. dx=0 and \$\frac{7}{2}.d\$ = 0 dx + 0 dry · (F.d) = 0 on adding (1), 2, 3 & Q, neget $\int \vec{F} \cdot d\vec{s} = \frac{9^3}{3} + \frac{2}{2} - \frac{3}{3} + 0$ $=\frac{\alpha^3}{2}$ Ex3: A vector field is given by F= (2y+3)î+x3)+(y=x) Evaluate (7.48) along the path c: x=2t, y=+, == +3 from += 0 to +=1. Sof : Here x=2t, y= +, Z=+3 - dx=2dt, dy=dt, d2=312df F. dor = { (2y+3) + x2j + (yz-x) 2 }, (dx7+d2)+d2) = (2y+3) dx + x2dy + (1/2-x) d2 = (24+3). 2d++ 27 d+.

$$\frac{1}{2} \cdot \frac{1}{4} = \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1$$

Substituting, y=2x2, where x goes from o to 1, ne get $\int \vec{P} \cdot d\vec{r} = \int 3n(2x^2) \cdot dx - (2x^2)^{\frac{1}{2}} \cdot d(2x^2)$ = [6x3 dx - 4x4. 4x dx $=\int (6x^3-16x^5)dx$ = [6. 24 - 16 x6] Ex5: If A=(3x2+6y)1-14y2)+20×22k, evaluate the line integral $\phi \vec{A} \cdot d\vec{r}$ from (0,0,0) to (1,1,1) along the curve $C: M=1, y=1^2, z=1^3$. Soft: me have, (A.dr) (32) = ([3x+6y) 1-14yz]+20x22x] (dx1+dy+dxx) = (3x7+6y)dx-14yzdy+20x22dz If x=1, y=1, z=13, then points (0,0,0) to (111) corresponds to t=0 to t=1.

Now,
$$\int A dx^{2} = \int \frac{1}{3} (31^{2} + 61^{2}) d4 - 141^{2} t^{2} d(t^{2})$$

$$= \int 9t^{2} dt - 141^{5} \cdot 2t dt + 20t \cdot t^{6} \cdot 3t^{2} dt$$

$$= \int 9t^{2} - 28t^{6} + 60t^{9} dt$$

$$= \left[9 \frac{t^{3}}{3} - 28t^{7} + 60t^{10} \right] dt$$

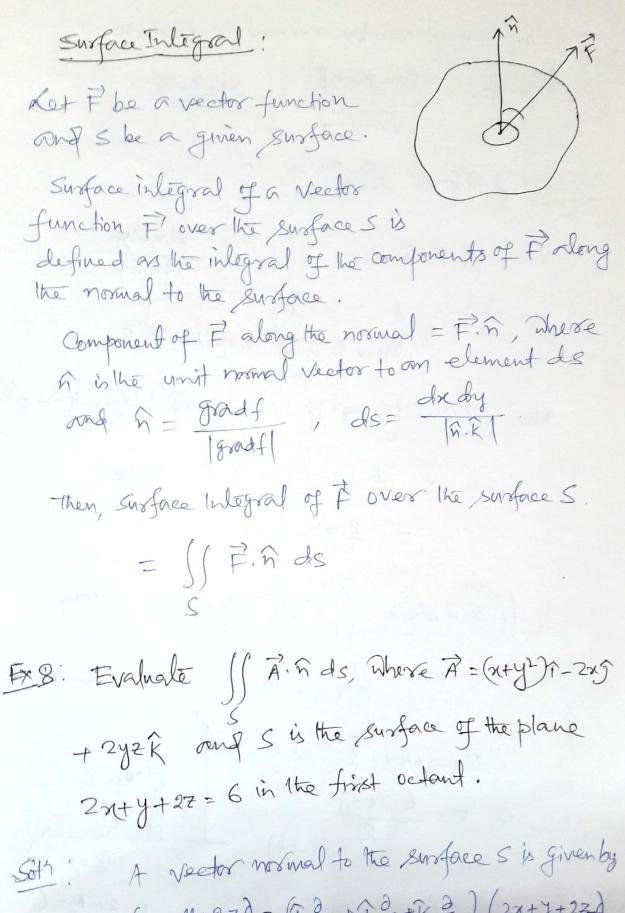
$$= \left[3t^{3} - 4t^{7} + 6t^{10} \right] dt$$

$$= 3 - 4 + 6$$

$$= 5$$

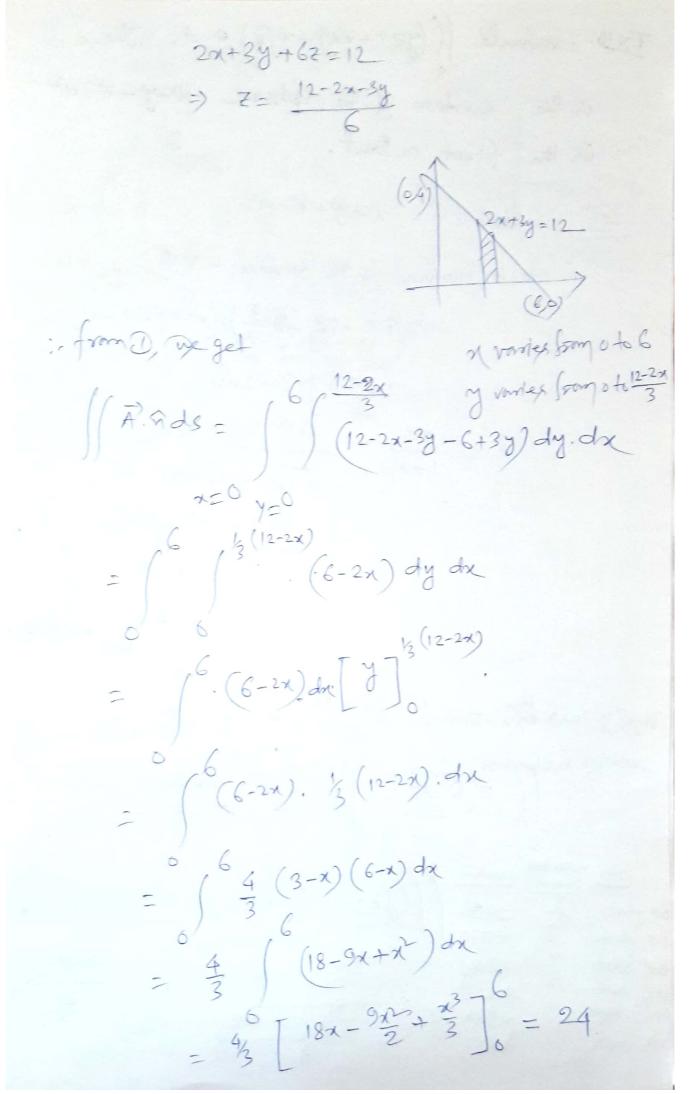
$$= 5$$
The Compute $\int F dx^{2} dt + \int f$

forametric equations of the circle are 7= 800, y= 8100 Putting 7=650, y=810 dn=-8/2000, dy=6/3000 in 1 De get (F. 48 = (Sino (-Sino) 40 - Gro(Grodo) = - (Sin8+Gro)do 21T do Ext: If a force == 2xyT+3nyS displaces a barticle in the My-plane from (0,0) to (14) along a curve y= 4x2. Find the work done. Soft: Work done = (F. dr) = ((2x3y1+3xys).(dx1+dys) = ((2x²ydx +3xydy)) = [2x2(4x2).dx+3x(4x2).d(4x2) = 1 8x4dx + 12x3.8x dx of (8x4+96x4) dx = 104[x5]

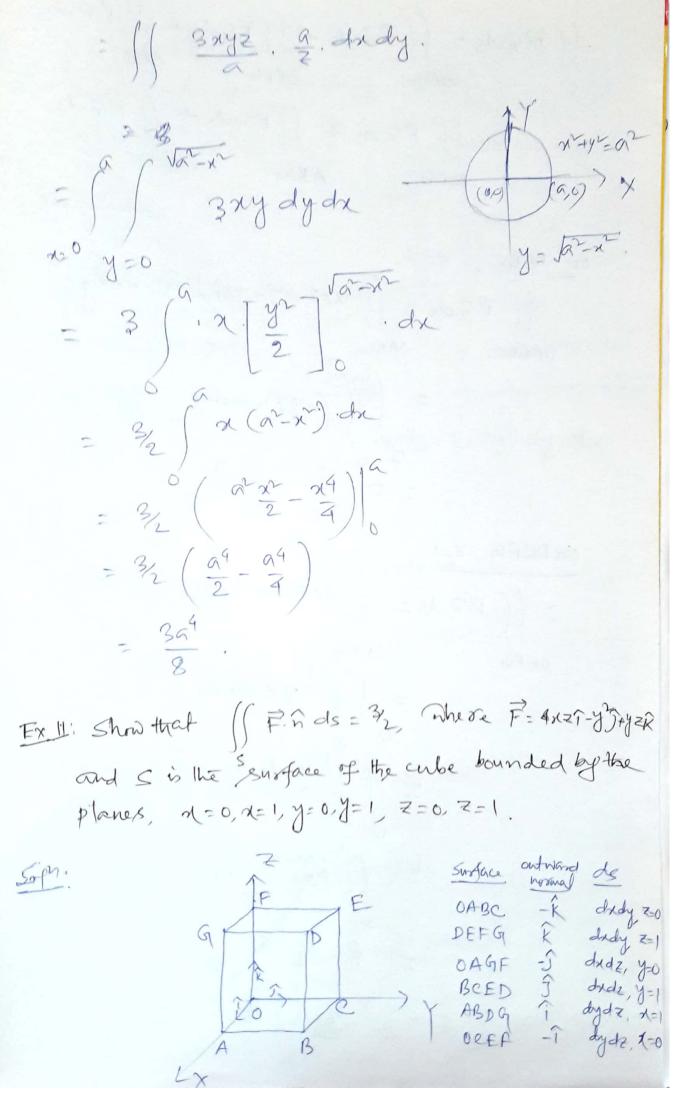


J. F. f. ds = (\{\frac{2}{3}y^2 + \frac{4}{3}y \left(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{4}{3}y \left(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{4}{3}y \right(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{4}{3}y \right(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{4}{3}y \right(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{4}{3}y \right(\frac{6-2x-y}{2}\right)\frac{3}{3}\frac{2}\frac{2}{3}\frac{2}{3}\frac{2}{3}\frac{2}{3}\frac{2}\frac{2}{3}\frac{2}{3}\ $= \int_{3}^{3} \left(\frac{6-2x}{3} \right) \left(\frac{3}{3} + 6-2x-3 \right) \cdot \frac{3}{4} \cdot \frac{dy \cdot dx}{23}$ $\binom{3}{3}\binom{(6-2x)}{\frac{4}{3}}\binom{3-x}{3-x}\cdot \frac{3}{2}\frac{3}{2}\frac{dy}{dx}$ = '2 (3-x) 6-2x
y'. dy dx =2 $\left[\frac{3}{2},3-1\right]$ $\left[\frac{3}{2}\right]$ $\left[\frac{3}{2}\right]$ $\left[\frac{3}{2}\right]$ $= 2/\int^{3} (3-x) \cdot (6-2x)^{2} dx$ = 4 (3 (3-x) dx $=4\left[\frac{(3-x)^4}{4(-1)}\right]$ -(6-81)

579: Evaluate S A.n. ds, Where 7 = 18 =1-12j+3yk and s is the part of the plane 2x+3y+6z=12 included in the first octant. Soft: Here A = 1827-125+3y R. 6 then Surface f = 201 + 34 + 62 - 12 :. Normal nector = of = (12+3y+6z-12) = 29+35+62 : n = unit normal at any point (x,y, 2) of 2x+3y+62=12 $\frac{21+35+62}{\sqrt{4+9+36}} = \frac{1}{7} \left(27+35+62 \right)$:.ds = \frac{dxdy}{1\text{n}\text{l}} = \frac{dxdy}{\frac{1}{2\text{1}} + 3\text{1} + (\text{x}).\text{k}} = \frac{dxdy}{\frac{5}{4}} = \$7dxdy HOD, \(\frac{1}{4.60} \) = \(\left(1827 - 123 + 3y\hat{k} \right) \frac{(27+35+60)}{7} = ((67-6+3y) dxdy



EXIO: Evaluate ((yz++zx)+xyx) & ds, where s is the surface of the sphere ray = 2= a2 in the first octant. Soft: Hore f = x+y+7-a-Vector normal to the surface - VP = (できからみ 大き) (イナタンナマーの) = 2x7+2y5+2zk $: \hat{h} = \frac{\nabla \varphi}{|\nabla \varphi|} = \frac{2x \hat{1} + 2y \hat{1} + 2z \hat{x}}{\sqrt{4x^2 + 4y^2 + 4z^2}}$ 2 /2+4+22 = 21+30+22 [: x+y+=a+ 成文 = XT+3+2x, 定 = 3. $\therefore \iint \vec{F} \cdot \hat{n} \, ds = \iint \vec{F} \cdot \hat{n} \cdot \frac{dx \, dy}{|\hat{n} \cdot \hat{k}|}$ = (yzî+zrý+xyx) (xî+ x)+zx), =



$$\int \widehat{F} \widehat{A} ds = \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds \\
+ \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds \\
+ \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds + \int \widehat{F} \widehat{A} ds \\
= \int (Ax27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (-yz) \cdot Ax dy$$

$$= \int (-yz) \cdot Ax dy$$

$$= \int (Ax27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (Ax27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x} (\widehat{x}) \cdot Ax dy$$

$$= \int (xx27 - yy) + yz \widehat{x}$$

$$=4[y]_{0}^{1}\cdot\left[\frac{z^{2}}{2}\right]_{0}^{1}$$

$$=4\cdot1\cdot\frac{1}{2}$$

$$=2.$$

$$\int_{0}^{2}\int_{$$

Volume Integral

Net F be a Vector point function and volume venetoped by a closed surface.

The volume integral = \(\int \vec{F}, \, \dv. \)

Entire If $\vec{F} = 2 \neq \hat{\gamma} - \chi \hat{j} + \hat{j} \hat{k}$, evaluate $\iint \vec{F} dv$, where ν is the region bounded by the surfaces $\chi = 0$, $\chi = 0$, $\chi = 0$, $\chi = 2$, $\chi = 4$, $\chi = 2$.

Soph:
$$\iint_{\mathbb{R}^{2}} F \cdot dv = \iint_{\mathbb{R}^{2}} (2\pi \hat{r} - x\hat{j} + y\hat{k}) dx dy dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[2\pi \hat{r} - x\hat{j} + y\hat{k} \right] dx dy dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[2\pi \hat{r} - x\hat{j} + y\hat{k} \right] dx dy dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[2\pi \hat{r} - x\hat{j} + y\hat{k} \right] dx dy dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[2\pi \hat{r} - x\hat{j} + y\hat{k} \right] dx dy dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(4-x^{4})\hat{r} - (2x-x^{2})\hat{r} + (2y-x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(4-x^{4})\hat{r} - (2x-x^{2})\hat{r} + (16-x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(4-x^{4})\hat{r} - (2x-x^{2})\hat{r} + (16-x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-4x^{4})\hat{r} - (2x-x^{2})\hat{r} + (16-x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-4x^{4})\hat{r} - (2x-4x^{2})\hat{r} + (16-x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-4x^{4})\hat{r} - (4x^{2}-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (4x^{2}-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (4x^{2}-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (4x^{2}-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (4x^{2}-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{k} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{r} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (16x-\frac{3}{2}x^{2})\hat{r} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} + (2x-x^{4})\hat{r} \right] dx$$

$$= \int_{0}^{2} \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} \right] dx$$

$$= \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})\hat{r} \right] dx$$

$$= \int_{0}^{4} \left[(16-x^{4})\hat{r} - (2x-x^{4})$$

Green's theorem Statement: If $\varphi(x,y)$, $\psi(x,y)$, $\frac{\partial \varphi}{\partial y}$ and $\frac{\partial \psi}{\partial x}$ be Continuous functions over a region R bounded by simple closed curve c in xy plane, $\oint \left(\oint dx + \psi dy \right) = \iint \left(\frac{\partial \psi}{\partial x} - \frac{\partial \phi}{\partial y} \right) dx dy$ Ex 13: Using Greens theorem, evaluate of (xydx+xtdy) where cis the boundary lessibled counter clockwise of the Islangle with vertices (0,0), (10), (11). Soft: By Greens Theorem, We have S(Qdn+tdy) = S(Q4-20) dxdy $\Rightarrow \oint \left(x^{2}y^{2}dx+x^{2}dy\right) = \left[\left(\frac{\partial}{\partial x}(x^{2})\right) - \frac{\partial}{\partial y}(x^{2}y)\right] dxdy$ => $\left(x^2ydx+x^2dy\right)^2 \int_{-\infty}^{\infty} \left(2x-x^2\right)dydx$ $= \int_{0}^{1} (2x-x^{2}) \cdot [y]_{0}^{x} \cdot dx$ $= \int_{0}^{1} (2x-x^{2}) \cdot x \cdot dx$

$$= \begin{cases} (2x^2 + x^3) dx \\ = \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{5}{12} \end{cases}$$

Ex. H. Verify Green's theorem for $\oint (xy+y^1) dx + x^2 dy$,

where C is bounded by $y=x$ and $y=x^2$.

Soft: Hore, $p=xy+y^2$, $y=x^2$.

$$(p dx+ydy) = (p dx+ydy) + (p dx+ydy)$$

$$(p dx+ydy) = (p dx+ydy) + (p dx+ydy)$$

Along e_1 , $y=x^2$ and e_1 variety from e_2 to e_1 .

$$(xy+y^2) dx + x^2 dy = \left[f_1(x^2) + (x^2)^2 \right] dx$$

$$= \left[(xy+y^2) dx + x^2 dy = \left[f_2(x^2) + (x^2)^2 \right] dx$$

$$= \left[(x^2+x^2) dx + x^2 dx + (x^2)^2 dx + x^2 dx + (x^2)^2 d$$

Along Cz, y=x and x varies from 1 to 0 : \$ (ny+y2) dx+x2dy = ({(xx+x2) dx+x2d(x)} $= \int_{-\infty}^{\infty} 3x^2 dx = -1.$ Thus, f(pdn+rdy) = f(ay+y)ten+ rdy Now by Green theorem $\oint (\varphi dx + \psi dy) = \left(\left(\frac{\partial \psi}{\partial x} - \frac{\partial \varphi}{\partial y} \right) dx dy$ $= \left(\left(\sqrt{\frac{\partial}{\partial x}} \left(x^{2} \right) - \frac{\partial}{\partial y} \left(xy + y^{2} \right) \right) \right)$ $= \int_{-\infty}^{\infty} \left(2x - x - 2y\right) dy dx$ (x-2y) dy dx $= \int_{-\infty}^{1} \left[xy - y^{2} \right]_{x^{2}}^{x} dx$ $= \int_{-\infty}^{1} \left[x^{2} - x^{2} - x^{3} + x^{4} \right) dx$

$$= \int_{3}^{2} (x^{4}-x^{3}) dx$$

$$= \left[\frac{x^{5}}{5} - \frac{x^{4}}{4}\right]_{0}^{2}$$

$$= \frac{1}{5} - \frac{1}{4} = -\frac{1}{20}$$
Hence, Green's theorem is verified from the equality of and 2.

Ex. 5: Verily Green's thorem is the place for $\int_{0}^{2} (3x^{2}-8y^{2}) dx + (4y-6ny) dy$, where $\int_{0}^{2} (3x^{2}-8y^{2}) dx + (4y-6ny) dy$, where $\int_{0}^{2} (3x^{2}-8y^{2}) dx + (4y-6ny) dy$

$$= \int_{0}^{2} (3x^{2}-8y^{2}) dx + (4y-6ny) dy$$

$$= \int_{0}^{2} (3x^{2}-8y^{2}) dx + (4y-6ny) dx$$

Along BA,
$$x = \frac{6+3y}{2}$$
 and y varies from $-2+00$

$$\therefore dx = \frac{3}{2}dy$$

$$\therefore \int (3x^{2}-8y^{2})dx + (4y-6xy)dy$$

$$= \int (3(\frac{6+3y}{2})^{2}-8y^{2})\frac{3}{2}dy + (4y-6(\frac{6+3y}{2})^{3})dy$$

$$= \int (\frac{9}{8}(6+3y)^{2}-12y^{2}+4y-18y-9y^{2})dy$$

$$= \int (\frac{9}{8}(6+3y)^{3}-21y^{2}-14y)dy$$

$$= \left[\frac{9}{8}(6+3y)^{3}-7y^{3}-7y^{2}-7y^{2}\right]$$

$$= \left[\frac{1}{8}(6+3y)^{3}-7y^{3}-7y^{2}-7y^{2}\right]$$

$$= \frac{6^{3}}{8}-56+28$$

$$= \frac{27}{8}-56+28$$

$$= \frac{1}{2}$$
Atong Ao, $y = 0$ and x vories from $x = 0$.

Atong Ao, $y = 0$ and $x = 0$ and $x = 0$.

$$\int (3x^{2}-8y^{2})dx + (4y-6xy)dy$$

$$= \int (3x^{2}-9y^{2})dx + (9)dy$$

$$= \int (3x^{2}-9y^{2})dx + (9)dy$$

$$= \int (3x^{2}-9y^{2})dx + (9)dy$$

Ex 16: Using Greens theorem, evaluate & (y-Sinx) on + Corndy, where c is the plane I riangle enclosed by the lines y=0, n=1/2 and y= =x. Here, Q=y-8'nx By Greens theorem, (y-Sinx) dat Grydy = \(\left\) \frac{\partial}{\sigmax} \(\text{Cop} x \) - \frac{\partial}{\sigmay} \(\text{y-8lmx} \) $= \left(\frac{1}{2}\right)^{\frac{2\pi}{1}} \left(-\sin(-1)\right) dy dx$ = - (SIMX+1). [y] o dx $-\int_{\mathbb{R}}^{1/2} \left(8jn\chi + 1 \right) \cdot \frac{2\chi}{\pi} \cdot d\chi$ $= -\frac{2}{\pi} \int_{-\pi}^{\pi/2} \chi(S_{1}^{2}n\chi+1) d\chi$ $2 - \frac{2}{\pi} \left\{ \chi \left(-\frac{2}{3}\chi + \chi \right) \right\}_{0}^{\pi} - \left(\frac{1}{1} \left(-\frac{2}{3}\chi + \chi \right) \right) dy$ Inlegrating by parts

$$= -\frac{2}{\pi} \left\{ \frac{\pi^2}{4} - \left[-8imx + x^2 \right] \frac{\pi}{2} \right\}$$

$$= -\left[\frac{\pi^2}{4} + \frac{2}{\pi} \right].$$

Ext: Apply Green's theorem to evaluate
$$\int \left[(2x^2 + y^2) dx + (x^2 + y^2) dy \right]. \text{ where } e \text{ is the } dx - axis \text{ and the upper half of the circle } x - y^2 - a^2.$$

Soft: By Green's Horson,
$$\int \left[(2x^2 - y^2) dx + (x^2 + y^2) dy \right]$$

$$= \left[\left[\frac{\partial}{\partial x} \left(x^2 + y^2 \right) - \frac{\partial}{\partial y} \left(2x - y^2 \right) \right] dx dy$$

$$= \left[\left[\frac{\partial}{\partial x} \left(x^2 + y^2 \right) - \frac{\partial}{\partial y} \left(2x - y^2 \right) \right] dx dy$$

$$= \frac{A}{2\pi^2} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{A}{2\pi^2} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dy \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y^2 \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(x + y \right) dx \right]$$

$$= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial$$

Stoke's theorem (Relation between line and surface integrals) If S be an open surface bounded by a closed curve c and P=fiT+fiS+fix be any continuously differentiable vector point function, then OF.d7 = Curl F. & ds where, h = Cosar + Copps + Cosy & is a unit mas external normal to any surface of. Ex 18: Using Stoke's theorem, evaluate of [(2x-y)dx-y22dy-y22dz], where cis the circle xi+y'=1, corresponding to the surface of sphere of unit radius. Ø (2~y)dx-yzrdy-yzda 2 \[(2a-y) \(- y \) \(- y \) \[- y \) \[\] \[\] \[\] \[\] \[\] \[\] \[\] \] By Stoke's theorem, of F.dr =) | Comp Finds. - 0

cond F= 1 1 2x-y -yz -yz $= \gamma \left(-2yz + 2yz\right) - \gamma \left(0 - 0\right) + k \left(0 + 1\right)$ Here ds = drady Putting the value of cursof F in 1 Be get Q F. Ar = | F. mds = (P.h. dxdy = . [dxdy : Area of the circle of unit sading = 11(1) Ex 19: Verify Stoke's theorem for F=(x74)1-2xys taken around the rectangle bounded by the lines x= ta, y=0, y=b. Let ABCD be the given rectangle

About
$$F dy = \int F dy + \int F dy + \int F dy + \int F dy$$

and $F dy = \int (x+y)^2 1 - 2xyy \int (dx x + dyy)$

$$= (x+y)^2 dx - 2xy dy$$

$$x = a \quad (ie, dx = 0) \text{ and } y \text{ varies from 0 to b}.$$

$$\therefore \int F dy = \int (ax+y)^2 d(ax+y)^2 d(a$$

Along CD, x=-a and y varies from b to o. : (F. 20 = (20y dy = 2a | m 0 Along DA, y=0 and a varies from -a to a .. (F.dr)= (x+0+)dx $= \left[\frac{3}{3}\right]_{-6}$ Thus (F.d) = (-ab- 2a3 - 2ab-ab+ 2a3 Now could = 1 2 3 2 32 27-yr -2xy 0 $= \Gamma(0-0) - \int (0-0) + \Re(-2y - 2y)$ = -4yk : Cond P. Ads = \(\left(\infty \) \(\text{Axdy} \) \(\text{Axdy} \) \(\text{Axdy} \)

$$= -4 \int_{-4}^{6} \int_{-20}^{6} y \, dy \, dx$$

$$= -4 \int_{-4}^{6} \left[\frac{y}{2}\right]_{0}^{6} \, dx$$

$$= -4 \int_{-40}^{6} \left[\frac{y}{2}\right]_{0}^{6} \, dx$$

$$= -2b \int_{-40}^{6} dx$$

$$= -2b \int_{-40}^{6} dx$$

$$= -40b^{2}.$$

Frequency of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$.

Soft: $\int_{-20}^{6} \vec{F} \, d\vec{r} = \int_{-20}^{6} (0 \times \vec{F}) \cdot \hat{r} \, ds$.

$$= \int_{-20}^{6} (0 \times \vec{F}) \cdot \hat{r} \, ds$$

$$= \int_{-20}^{6} (0 - 0) + \hat{r} \cdot (1 + 2b)$$

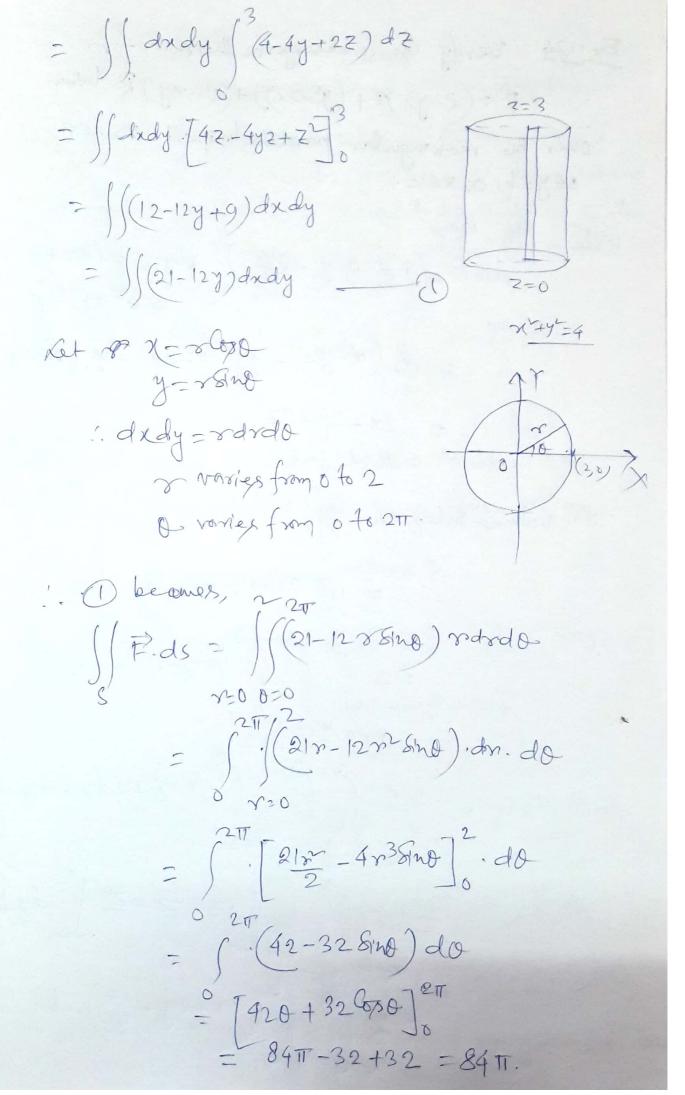
$$= (1 + 2y) \hat{r} \cdot \frac{1}{2} \cdot \frac$$

The given plane is y+2-2=0 Hormal nector 2000 = VP = (12 + 3 2 + 2 2) (y+2-2) = 7(0)+)(1)+x(1) : unif vormal vector $\hat{\eta} = \frac{\hat{J} + \hat{k}}{\sqrt{1 + 1}} = \frac{\hat{J} + \hat{k}}{\sqrt{2}}$ ds = dxdy RR = 3+2 R = 12 : OF. d7 = \((1+2y) \hat{\alpha} (\frac{3+\hat{\alpha}}{\sqrt{2}} \dxdy \frac{x^2+y^2=1}{\sqrt{2}} = (1+24) to . 12. dxdy = \((1+2y) doxdy Ket d= ~ 690, 7= 8 8mb Then dody notrodo y varies from 0 to 1 O raries from 0 to 211

Ganss Divergence Theorem (Relation between surface and volume integrals) Statement: The surface integral of the normal component of a vector function P taken around a cloped surface S is equal to the integral of the Livergence of F taken over the volume V energed by the surface S. Mathematically, \(\varphi \hat{\varphi} \hat{\varphi} \div \varphi \div \div \varphi \div \varph Ex. 22: Use Gauss divergence theorem to show that (V(xx+yx+22) d8 = 6 V, where 5 is any) closed surface enclosing volume V. Soft: Have V (x7+y1+22) = (12x+52+162) (x7+y2+22) = 2 (x1+4)+2x) = [(2(x1+20+2k) h.ds = 2 [[div (x1+45+2k) dv

I wring sivergence theore

Now, div (x1+35+22) = (12 + 122 + 22) = ox + oy + oz from and a , Be have $\int \int \nabla (x^{2} + y^{2} + 2^{2}) dS = 2 \int \int 3. dv$ = 6 Mdv Ex:23: Use Gauss divergence therem to evaluate SF. ds, where, F=4x7-2y25+22x. and S is the surface bounding the region xx+y=4, z=0 Sophi: By Divergence Herrem, S(P. ds = Modiv F. dv = III (4-4y+2z).dv (((4-4y+22) dxdydz



Ex: 24: Verily Ganss divergence theorem for F = (2-72)7+(y2-2x)3+(22-xy) & taken over the rectangular parallelopiped o < x < a, 0 = y = b, 0 < 7 ≤ c. Sop! The have. div F = (1 2 + 1 2 + 1 2) (x-y2) (x-= = = = (x=y2) + = (y=2x) + = (x=ny) = 2x+2y+2z = 2 (x+y+z) i. volume Inlégral = // TF. dv $= \int \left(\left(2(x+y+2) \right) dv$ $= 2 \left(\left(\frac{b}{(x+y+2)} \right) \cdot \frac{dx}{dy} dz \right)$ $=2 \left(\frac{a}{b} \right)^{\frac{1}{2}} \left(\frac{a+y+2}{a+y+2} \right) dz \cdot dy \cdot dx$ = 2 | a | [xz+yz+==] c. dydx 2 / (cx+ey+ 2). dy. dx

$$= 2 \int_{0}^{a} \left[\exp(-\frac{y}{2} + \frac{c}{2}y) \right]^{b}, dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2} + \frac{c}{2}y)}{2} \right) dx$$

$$= 2 \int_{0}^{a} \left(\frac{b \exp(-\frac{y}{2}$$

Surface OABC DEFG OAFG	onthord hosmal -k k	de drdy drdz drdz	2=0 z=c y=0 y=6
BCDE ABEF	Ĵ.	dydz	7=9
ocod		dry da	x = 0
OhoABC, SCABC		xy) dxdy [
on DEFG,))	$=\int_{0}^{\infty}$	1 (x-y2) + (x) + (

Scanned by CamScanner

en, | F. 5 ds = | (| (x - y2) + (y - 2x)) + (22 - xy) x | 18 000 OAFG = - ((y-zx) dxdz = - (a (e (0-7x) dxd2 $=-\int_{0}^{\alpha}\left[\frac{\chi z^{2}}{2}\right]_{0}^{\alpha}d\chi$ $=-\int_{\alpha}^{\alpha}\frac{\chi c^{2}}{2}d\chi$ - Territa 2 arcz [F h ds = [(x-yz)1+(y-zx))+(z-xy) R] fdxdz BEDE = (((y-12) dxdz = BCDE as (br-xz) drdz = fa (be- xer), dx = [6cx - 2]0 - abc - arcz